ﻻ يوجد ملخص باللغة العربية
A general theory of top-down cascades in complex networks is described which explains two similar types of perturbation amplifications in the complex networks of business supply chains (the `bullwhip effect) and ecological food webs (trophic cascades). The dependence of the strength of the effects on the interaction strength and covariance in the dynamics as well as the graph structure allows both explanation and prediction of widely recognized effects in each type of system.
Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether inc
Link failures repeatedly induce large-scale outages in power grids and other supply networks. Yet, it is still not well understood, which links are particularly prone to inducing such outages. Here we analyze how the nature and location of each link
Recent work has found that the behavior of an individual can be altered when infected by a parasite. Here we explore the question: under what conditions, in principle, can a general parasitic infection control system-wide social behaviors? We analyze
Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tr
We propose a strategy based on the site-bond percolation to minimize the propagation of textit{Phytophthora} zoospores on plantations, consisting in introducing physical barriers between neighboring plants. Two clustering processes are distinguished: