ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Simulation of Magnetic Interactions in Polycrystalline YFeO3

116   0   0.0 ( 0 )
 نشر من قبل Gerardo F. Goya
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H_E = 5590 kOe), anisotropy field (H_A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H_D = 149 kOe) are in good agreement with previous reports on this system.



قيم البحث

اقرأ أيضاً

We describe a theoretical and computational framework for adiabatic shear banding (ASB) and dynamic recrystallization (DRX) in polycrystalline materials. The Langer-Bouchbinder-Lookman (LBL) thermodynamic theory of polycrystalline plasticity, which w e recently reformulated to describe DRX via the inclusion of the grain boundary density or the grain size as an internal state variable, provides a convenient and self-consistent way to represent the viscoplastic and thermal behavior of the material, with minimal ad-hoc assumptions regarding the initiation of yielding or onset of shear banding. We implement the LBL-DRX theory in conjunction with a finite-element computational framework. Favorable comparison to experimental measurements on a top-hat AISI 316L stainless steel sample compressed with a split-Hopkinson pressure bar suggests the accuracy and usefulness of the LBL-DRX framework, and demonstrates the crucial role of DRX in strain localization.
Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of th e magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
In this work we demonstrate that the polycrystalline ribbons of (Ni48Co6)Mn26Al20 with B2 structure at room temperature show a magnetic behavior with competing magnetic exchange interactions leading to frozen disorders at low temperatures. It is esta blished that by considering the presence of both antiferromagnetic and ferromagnetic sublattices, we can explain the observed magnetic behavior including the metamagnetic transition observed in these samples. From the Arrott plots, the Neel temperature of (Ni48Co6)Mn26Al20 is deduced to be ~170 K and the broad ferro to para like magnetic phase transition is observed at ~ 200 K. Based on Neel theory, a cluster model is used to explain the presence of ferromagnetic and anti-ferromagnetic clusters in the studied ribbons. Formation of ferromagnetic clusters can be understood in terms of positive exchange interactions among the Mn atoms that are neighboring to Co atoms which are located on the Ni sites.
Magnetoelectric coupling in the polycrystalline antiferromagnets CuFe0.95Rh0.05O2 and CuFeO2 has been investigated. For both samples, electric polarization was observed in the absence of an applied external magnetic field demonstrating that for multi ferroic research ceramics are worth to be studied. The observed magnetodielectric effect for CuFe0.95Rh0.05O2 in the electrically polar phase supports the existence of a noncollinear antiferromagnetic state. Interestingly, the electric polarization of this sample can be suppressed by a magnetic field. The temperature dependence of the relative magnitude of the magnetodielectric effect shows a discontinuity, clearly indicating different mechanisms of the magnetodielectric couplings in polar and paraelectric antiferromagnetic states.
100 - M. D. Johannes , Igor Mazin 2009
One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that beco me magnetic by virtue of spin-Peierls type transition due to near-nesting between the hole and the electron Fermi surface pockets. The other argues these materials are strongly or at least moderately correlated, the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this paper we argue that neither picture is fully correct. The systems are moderately correlated, but with correlations driven by Hunds rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hunds intra-atomic exchange. Superexchange is not operative and the interactions between the Fe moments are considerably long-range and driven mostly by one-electron energies of all occupied states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا