ﻻ يوجد ملخص باللغة العربية
Simulations in which a globular ring polymer with delocalized knots is separated in two interacting loops by a slipping link, or in two non-interacting globuli by a wall with a hole, show how the minimal crossing number of the knots controls the equilibrium statistics. With slipping link the ring length is divided between the loops according to a simple law, but with unexpectedly large fluctuations. These are suppressed only for unknotted loops, whose length distribution shows always a fast power law decay. We also discover and explain a topological effect interfering with that of surface tension in the globule translocation through a membrane nanopore.
In the first part of this work a summary is provided of some recent experiments and theoretical results which are relevant in the research of systems of polymer rings in nontrivial topological conformations. Next, some advances in modeling the behavi
Soft topological surface phonons in idealized ball-and-spring lattices with coordination number $z=2d$ in $d$ dimensions become finite-frequency surface phonons in physically realizable superisostatic lattices with $z>2d$. We study these finite-frequ
Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers $Wi<<1$. Thickening coincides with the extreme elongation of a mino
We present the results of analytic calculations and numerical simulations of the behaviour of a new class of chain molecules which we call thick polymers. The concept of the thickness of such a polymer, viewed as a tube, is encapsulated by a special
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydr