ﻻ يوجد ملخص باللغة العربية
We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting hybrid entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a $q$-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.
We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in
This work develops analytic methods to quantitatively demarcate quantum reality from its subset of classical phenomenon, as well as from the superset of general probabilistic theories. Regarding quantum nonlocality, we discuss how to determine the qu
Secret sharing allows three or more parties to share secret information which can only be decrypted through collaboration. It complements quantum key distribution as a valuable resource for securely distributing information. Here we take advantage of
A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high eff
A photonic process named as quantum state joining has been recently experimentally demonstrated [C. Vitelli et al., Nature Photon. 7, 521 (2013)] that corresponds to the transfer of the internal two-dimensional quantum states of two input photons, i.