ﻻ يوجد ملخص باللغة العربية
We present the first results of a pilot study aimed at understanding the influence of bars on the evolution of galaxy discs through the study of their stellar content. We examine here the kinematics, star formation history, mass-weighted, luminosity-weighted, and single stellar population (SSP) equivalent ages and metallicities for four galaxies ranging from lenticulars to late-type spirals. The data employed extends to 2-3 disc scalelengths, with S/N(A)>50. Several techniques are explored to derive star formation histories and SSP-equivalent parameters, each of which are shown to be compatible. We demostrate that the age-metallicity degeneracy is highly reduced by using spectral fitting techniques --instead of indices-- to derive these parameters. We found that the majority of the stellar mass in our sample is composed of old (~10 Gyr) stars. This is true in the bulge and the disc region, even beyond two disc scalelengths. In the bulge region, we find that the young, dynamically cold, structures produced by the presence of the bar (e.g., nuclear discs or rings) are responsible for shaping the bulges age and metallicity gradients. In the disc region, a larger fraction of young stars is present in the external parts of the disc compared with the inner disc. The disc growth is, therefore, compatible with a moderate inside-out formation scenario, where the luminosity weighted age changes from ~10 Gyrs in the centre, to ~4 Gyrs at two disc scalelengths, depending upon the galaxy. For two galaxies, we compare the metallicity and age gradients of the disc major axis with that of the bar, finding very important differences. In particular, the stellar population of the bar is more similar to the bulge than to the disc, indicating that, at least in those two galaxies, bars formed long ago and have survived to the present day. (abridged)
Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely
We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo proj
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ
Using the method of integral-field (3D) spectroscopy, we have investigated the kinematics and distribution of the gas and stars at the center of the early-type spiral galaxy with a medium scale bar NGC 7177 as well as the change in the mean age of th
We study the radial structure of the stellar mass surface density ($mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the st