ﻻ يوجد ملخص باللغة العربية
A secret-key generation scheme based on a layered broadcasting strategy is introduced for slow-fading channels. In the model considered, Alice wants to share a key with Bob while keeping the key secret from Eve, who is a passive eavesdropper. Both Alice-Bob and Alice-Eve channels are assumed to undergo slow fading, and perfect channel state information (CSI) is assumed to be known only at the receivers during the transmission. In each fading slot, Alice broadcasts a continuum of coded layers and, hence, allows Bob to decode at the rate corresponding to the fading state (unknown to Alice). The index of a reliably decoded layer is sent back from Bob to Alice via a public and error-free channel and used to generate a common secret key. In this paper, the achievable secrecy key rate is first derived for a given power distribution over coded layers. The optimal power distribution is then characterized. It is shown that layered broadcast coding can increase the secrecy key rate significantly compared to single-level coding.
Full-duplex (FD) communication is regarded as a key technology in future 5G and Internet of Things (IoT) systems. In addition to high data rate constraints, the success of these systems depends on the ability to allow for confidentiality and security
We investigate the secure communications over correlated wiretap Rayleigh fading channels assuming the full channel state information (CSI) available. Based on the information theoretic formulation, we derive closed-form expressions for the average s
The unique information ($UI$) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality fo
Recently, the partial information decomposition emerged as a promising framework for identifying the meaningful components of the information contained in a joint distribution. Its adoption and practical application, however, have been stymied by the
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s