ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite GUTs: models and expectations at the LHC

158   0   0.0 ( 0 )
 نشر من قبل Alvise Varagnolo
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Michele Frigerio




اسأل ChatGPT حول البحث

We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.

قيم البحث

اقرأ أيضاً

220 - Harald Fritzsch 2015
In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been observed at the LHC. Specific properties of the excited bosons are studied, in particular their decays into weak bosons and photons. Such decays might have been observed recently with the ATLAS detector at the Large Hadron Collider.
The top quark will be produced copiously at the LHC. This will make both detailed physics studies and the use of top quark decays for detector calibration possible. This talk reviews plans and prospects for top physics activities in the ATLAS and CMS experiments.
We systematically study the modifications in the couplings of the Higgs boson, when identified as a pseudo Nambu-Goldstone boson of a strong sector, in the light of LHC Run 1 and Run 2 data. For the minimal coset SO(5)/SO(4) of the strong sector, we focus on scenarios where the standard model left- and right-handed fermions (specifically, the top and bottom quarks) are either in 5 or in the symmetric 14 representation of SO(5). Going beyond the minimal 5L-5R representation, to what we call here the extended models, we observe that it is possible to construct more than one invariant in the Yukawa sector. In such models, the Yukawa couplings of the 125 GeV Higgs boson undergo nontrivial modifications. The pattern of such modifications can be encoded in a generic phenomenological Lagrangian which applies to a wide class of such models. We show that the presence of more than one Yukawa invariant allows the gauge and Yukawa coupling modifiers to be decorrelated in the extended models, and this decorrelation leads to a relaxation of the bound on the compositeness scale (f > 640 GeV at 95% CL, as compared to f > 1 TeV for the minimal 5L-5R representation model). We also study the Yukawa coupling modifications in the context of the next-to-minimal strong sector coset SO(6)/SO(5) for fermion-embedding up to representations of dimension 20. While quantifying our observations, we have performed a detailed chi-square fit using the ATLAS and CMS combined Run 1 and available Run 2 data.
This paper provides an overview to three recent papers on the bottom up approach to GUTs in F-theory. We assume only a minimal familiarity with string theory and phenomenology. After explaining the potential for predictive string phenomenology within this framework, we introduce the ingredients of F-theory GUTs, and show how these models naturally address various puzzles in four-dimensional GUT models. We next describe how supersymmetry is broken, and show that in a broad class of models, solving the mu/B mu problem requires a specific scale of supersymmetry breaking consistent with a particular deformation of the gauge mediation scenario. This rigid structure enables us to reliably extract predictions for the sparticle spectrum of the MSSM. A brief sketch of expected LHC signals, as well as ways to falsify this class of models is also included.
We study the implications of a large degree of compositeness for the light generation quarks in composite pseudo-Nambu-Goldstone-boson Higgs models. We focus in particular on viable scenarios where the right-handed up-type quarks have a sizable mixin g with the strong dynamics. For concreteness we assume the latter to be characterized by an SO(5)/SO(4) symmetry with fermionic resonances in the SO(4) singlet and fourplet representations. Singlet partners dominantly decay to a Higgs boson and jets. As no dedicated searches are currently looking for these final states, singlet partners can still be rather light. Conversely, some fourplet partners dominantly decay to an electroweak gauge boson and a jet, a signature which has been analyzed at the LHC. To constrain the parameter space of this scenario we have reinterpreted various LHC analyses. In the limit of first two generation degeneracy, as in minimal flavor violation or U(2)-symmetric flavor models, fourplet partners need to be relatively heavy, with masses above 1.8 TeV, or the level of compositeness needs to be rather small. The situation is rather different in models that deviate from the first two generation degeneracy paradigm, as the charm parton distribution functions are suppressed relative to the up quark ones. The right-handed charm quark can be composite and its partners being as light as 600 GeV, while the right-handed up quark needs either to be mostly elementary or to have its partners as heavy as 2 TeV. Models with fully composite singlet fermions are also analyzed, leading to similar conclusions. Finally, we consider the case where both the fourplet and the singlet states are present. In this case the bounds could be significantly weaken due to a combination of smaller production rates and the opening of new channels including cascade processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا