ترغب بنشر مسار تعليمي؟ اضغط هنا

A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3

211   0   0.0 ( 0 )
 نشر من قبل Adam G. Riess
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam G. Riess




اسأل ChatGPT حول البحث

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to determine the Hubble constant (H0) from optical and infrared observations of over 600 Cepheid variables in the host galaxies of 8 recent Type Ia supernovae (SNe Ia), providing the calibration for a mag-z relation of 253 SNe Ia. Increased precision over past measurements comes from: (1) more than doubling the number of infrared observations of Cepheids in nearby SN hosts; (2) increasing the sample of ideal SN Ia calibrators from six to eight; (3) increasing by 20% the number of Cepheids with infrared observations in the megamaser host NGC 4258; (4) reducing the difference in the mean metallicity of the Cepheid comparison samples from Delta log [O/H] = 0.08 to 0.05; and (5) calibrating all optical Cepheid colors with one camera, WFC3, to remove cross-instrument zero-point errors. Uncertainty in H0 from beyond the 1st rung of the distance ladder is reduced from 3.5% to 2.3%. The measurement of H0 via the geometric distance to NGC 4258 is 74.8 pm 3.1 km s- 1 Mpc-1, a 4.1% measurement including systematics. Better precision independent of NGC 4258 comes from two alternative Cepheid absolute calibrations: (1) 13 Milky Way Cepheids with parallaxes and (2) 92 Cepheids in the Large Magellanic Cloud with multiple eclipsing binary distances, yielding 74.4 pm 2.5 km s- 1 Mpc-1, a 3.4% uncertainty with systematics. Our best estimate uses all three calibrations but a larger uncertainty afforded from any two: H0 = 73.8 pm 2.4 km s- 1 Mpc-1 including systematics, a 3.3% uncertainty. The improvement in H0, combined with WMAP7yr data, results in a constraint on the EOS parameter of dark energy of w = -1.08 pm 0.10 and Neff = 4.2 pm 0.7 for the number of relativistic species in the early universe. It also rules out the best-fitting gigaparsec-scale void models, posited as an alternative to dark energy. (abridged)


قيم البحث

اقرأ أيضاً

292 - Harry I. Teplitz 2013
We present an overview of a 90-orbit Hubble Space Telescope treasury program to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is design ed to: (i) Investigate the episode of peak star formation activity in galaxies at 1<z<2.5; (ii) Probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (iii) Examine the escape fraction of ionizing radiation from galaxies at z~2-3; (iv) Greatly improve the reliability of photometric redshift estimates; and (v) Measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z~1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instruments capability to add background light through a post-flash. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z~1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5 sigma in a 0.2 arcsecond radius aperture depending on filter and observing epoch.
We probe the structure and composition of the atmospheres of 5 hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 $mu$m) to study TrES-2b, TrES-4b, and CoRoT-1b in transit, Tr ES-3b in secondary eclipse, and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 $mu$m, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g. solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit and/or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean $1-sigma$ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean $1-sigma$ precision per bin corresponds to a planet-to-star flux ratio of $1.5times10^{-4}$ and $2.1times10^{-4}$ for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multi-visit campaigns are necessary to place strong constraints on water abundance.
We present here our observations and analysis of the dayside emission spectrum of the hot Jupiter WASP-103b. We observed WASP-103b during secondary eclipse using two visits of the Hubble Space Telescope with the G141 grism on Wide Field Camera 3 in s patial scan mode. We generated secondary eclipse light curves of the planet in both blended white-light and spectrally binned wavechannels from 1.1-1.7 micron and corrected the light curves for flux contamination from a nearby companion star. We modeled the detector systematics and secondary eclipse spectrum using Gaussian process regression and found that the near-IR emission spectrum of WASP-103b is featureless across the observed near-IR region to down to a sensitivity of 175 ppm, and shows a shallow slope towards the red. The atmosphere has a single brightness temperature of T_B = 2890 K across this wavelength range. This region of the spectrum is indistinguishable from isothermal, but may not manifest from a physically isothermal system, i.e. pseudo-isothermal. A Solar-metallicity profile with a thermal inversion layer at 10^-2 bar fits WASP-103bs spectrum with high confidence, as do an isothermal profile with Solar metallicity and a monotonically decreasing atmosphere with C/O>1. The data rule out a monotonically decreasing atmospheric profile with Solar composition, and we rule out a low-metallicity decreasing profile as non-physical for this system. The pseudo-isothermal profile could be explained by a thermal inversion layer just above the layer probed by our observations, or by clouds or haze in the upper atmosphere. Transmission spectra at optical wavelengths would allow us to better differentiate between potential atmospheric models.
In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually-selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 < z < 1.5, with each redshift spectroscopically-confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and ACS GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broad-band photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 11< log(M [Solar]) < 12. By transforming the observed photometry into the GALEX FUV and NUV, Johnson V, and SDSS g and r bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V)=3.5 and (NUV-V)=3.3, with 1$sigma$ standard deviations approximately equal to 1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star-formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (<~50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star-formation episodes are activated, are discussed.
We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {mu}m in wavelength at 0.07-0.15 FWHM resolution and 0.090 Multidrizzled pixels to depths of ABsimeq 26.0-27.0 mag (5-{sigma}) for point sources, and ABsimeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15 FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to ABsimeq 25-26 mag from the UV to the near-IR, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا