ﻻ يوجد ملخص باللغة العربية
We present the results of searches for dipolar-type anisotropies in different energy ranges above $2.5times 10^{17}$ eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% $C.L.$ for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.
We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, $vec{d}_p
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^circ$ and energies in excess of 4 EeV ($4 times 10^{18}$ eV). This search is con
It is possible that ultra-high energy cosmic rays (UHECRs) are generated by active galactic nuclei (AGNs), but there is currently no conclusive evidence for this hypothesis. Several reports of correlations between the arrival directions of UHECRs and
We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between $60^
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the