ترغب بنشر مسار تعليمي؟ اضغط هنا

Iterative destriping and photometric calibration for Planck-HFI, polarized, multi-detector map-making

276   0   0.0 ( 0 )
 نشر من قبل Matthieu Tristram
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an iterative scheme designed to recover calibrated I, Q, and U maps from Planck-HFI data using the orbital dipole due to the satellite motion with respect to the Solar System frame. It combines a map reconstruction, based on a destriping technique, juxtaposed with an absolute calibration algorithm. We evaluate systematic and statistical uncertainties incurred during both these steps with the help of realistic, Planck-like simulations containing CMB, foreground components and instrumental noise, and assess the accuracy of the sky map reconstruction by considering the maps of the residuals and their spectra. In particular, we discuss destriping residuals for polarization sensitive detectors similar to those of Planck-HFI under different noise hypotheses and show that these residuals are negligible (for intensity maps) or smaller than the white noise level (for Q and U Stokes maps), for l > 50. We also demonstrate that the combined level of residuals of this scheme remains comparable to those of the destriping-only case except at very low l where residuals from the calibration appear. For all the considered noise hypotheses, the relative calibration precision is on the order of a few 10e-4, with a systematic bias of the same order of magnitude.



قيم البحث

اقرأ أيضاً

This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on s uch a large range, two different photometric calibration schemes have to be used. The 545 and 857 GHz data are calibrated using Uranus and Neptune flux density measurements, compared with models of their atmospheric emissions to calibrate the data. The lower frequencies (below 353 GHz) are calibrated using the cosmological microwave background dipole.One of the components of this anisotropy results from the orbital motion of the satellite in the Solar System, and is therefore time-variable. Photometric calibration is thus tightly linked to mapmaking, which also addresses low frequency noise removal. The 2013 released HFI data show some evidence for apparent gain variations of the HFI bolometers detection chain. These variations were identified by comparing observations taken more than one year apart in the same configuration. We developed an effective correction to limit its effect on calibration, and assess its accuracy. We present several methods used to estimate the precision of the photometric calibration. We distinguish relative (from one detector to another, or from one frequency to another) and absolute uncertainties. In both cases, we found that these uncertainties range from a few $10^{-3}$ to several per cents from 100 to 857 GHz. We describe the pipeline producing the maps from the HFI timelines, based on the photometric calibration parameters and we detail the scheme used to a posteriori set the zero level of the maps. We also briefly discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. We finally summarize the basic characteristics of the set of the HFI maps from the 2013 Planck data release.
Future cosmic microwave background (CMB) polarisation experiments aim to measure an unprecedentedly small signal - the primordial gravity wave component of the polarisation field B-mode. To achieve this, they will analyse huge datasets, involving yea rs worth of time-ordered data (TOD) from massively multi-detector focal planes. This creates the need for fast and precise methods to complement the M-L approach in analysis pipelines. In this paper, we investigate fast map-making methods as applied to long duration, massively multi-detector, ground-based experiments, in the context of the search for B-modes. We focus on two alternative map-making approaches: destriping and TOD filtering, comparing their performance on simulated multi-detector polarisation data. We have written an optimised, parallel destriping code, the DEStriping CARTographer DESCART, that is generalised for massive focal planes, including the potential effect of cross-correlated TOD 1/f noise. We also determine the scaling of computing time for destriping as applied to a simulated full-season data-set for a realistic experiment. We find that destriping can out-perform filtering in estimating both the large-scale E and B-mode angular power spectra. In particular, filtering can produce significant spurious B-mode power via EB mixing. Whilst this can be removed, it contributes to the variance of B-mode bandpower estimates at scales near the primordial B-mode peak. For the experimental configuration we simulate, this has an effect on the possible detection significance for primordial B-modes. Destriping is a viable alternative fast method to the full M-L approach that does not cause the problems associated with filtering, and is flexible enough to fit into both M-L and Monte-Carlo pseudo-Cl pipelines.
We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz / 500 $mu$m and 857 GHz / 350 $mu$m. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg^2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE / HFI relative gains are 1.047 ($pm$ 0.0069) and 1.003 ($pm$ 0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor (Abridged)
We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE re presents a natural evolution of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. The net effect of the improvements is lower levels of noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component separation across all nine Planck frequencies. The amplitude is ($3366.6 pm 2.7$)$mu$K, consistent with, albeit slightly higher than, earlier estimates. From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of $tau = 0.051 pm 0.006$, which appears robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and parameter files needed to improve further on the analysis and to run matching simulations.
We present a parallel implementation of a map-making algorithm for CMB anisotropy experiments which is both fast and efficient. We show for the first time a Maximum Likelihood, minimum variance map obtained by processing the entire data stream expect ed from the Planck Surveyor, under the assumption of a symmetric beam profile. Here we restrict ourselves to the case of the 30 GHz channel of the Planck Low Frequency Instrument. The extension to Planck higher frequency channels is straightforward. If the satellite pointing periodicity is good enough to average data that belong to the same sky circle, then the code runs very efficiently on workstations. The serial version of our code also runs on very competitive time-scales the map-making pipeline for current and forthcoming balloon borne experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا