ترغب بنشر مسار تعليمي؟ اضغط هنا

Computationally-Driven Experimental Discovery of the CeIr$_4$In Compound

341   0   0.0 ( 0 )
 نشر من قبل Richard G. Hennig
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined experimental and computational methodology for the discovery of new materials. Density functional theory (DFT) formation energy calculations allow us to predict the stability of various hypothetical structures. We demonstrate this approach by computationally predicting the Ce-Ir-In ternary phase diagram. We predict previously-unknown compounds CeIr$_4$In and Ce$_2$Ir$_2$In to be stable. Subsequently, we successfully synthesize CeIr$_4$In and characterize it by X-ray diffraction. Magnetization and heat capacity measurements of CeIr$_4$In are reported. The correct prediction and discovery of CeIr$_4$In validates this approach for discovering new materials.

قيم البحث

اقرأ أيضاً

Three-dimensional (3D) topological nodal points, such as Weyl and Dirac nodes have attracted wide-spread interest across multiple disciplines and diverse material systems. Unlike nodal points that contain little structural variations, nodal lines can have numerous topological configurations in the momentum space, forming nodal rings, nodal chains and potentially nodal links and nodal knots. However, nodal lines have much less development for the lack of ideal material platforms. In condensed matter for example, nodal lines are often fragile to spin-orbit-coupling, locating off the Fermi level, coexisting with energy-degenerate trivial bands and dispersing strongly in energy of the line degeneracy. Here, overcoming all above difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear bandtouching rings chained across the entire Brillouin zone (BZ). These nodal chains are protected by mirror symmetries and have a frequency variation less than 1%. We used angle-resolved transmission (ART) to probe the projected bulk dispersions and performed Fourier-transformed field scan (FTFS) to map out the surface dispersions, which is a quadratic touching between two drumhead surface bands. Our results established an ideal nodal-line material for further studies of topological line-degeneracies with nontrivial connectivities, as well as the consequent wave dynamics richer than 2D Dirac and 3D Weyl materials.
Three-dimensional (3D) topological Weyl semimetals (TWSs) represent a novel state of quantum matter with unusual electronic structures that resemble both a 3D graphene and a topological insulator by possessing pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming the unique Fermi-arc type Fermi-surface (FS). Each Weyl point is chiral and contains half of the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in the momentum space. Here, by performing angle-resolved photoemission spectroscopy on non-centrosymmetric compound TaAs, we observed its complete band structures including the unique Fermi-arc FS and linear bulk band dispersion across the Weyl points, in excellent agreement with the theoretical calculations. This discovery not only confirms TaAs as the first 3D TWS, but also provides an ideal platform for realizing exotic physical phenomena (e.g. negative magnetoresistance, chiral magnetic effects and quantum anomalous Hall effect) which may also lead to novel future applications.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge [1-6]. The bulk-edge correspondence, widely-adopted in experiments to determine the band topology from edge properties, however, becomes i nadequate in discerning various topological crystalline phases [7-17], leading to great challenges in the experimental classification of the large family of topological crystalline materials [4-6]. Theories predict that disclinations, ubiquitous crystallographic defects, provide an effective probe of crystalline topology beyond edges [18-21], which, however, has not yet been confirmed in experiments. Here, we report the experimental discovery of the bulk-disclination correspondence which is manifested as the fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns---a fundamental property of many topological crystalline insulators (TCIs). Meanwhile, the robust bound states at disclinations emerge as a secondary, but directly observable property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe those hallmark features via pump-probe and near-field detection measurements. Both the fractional charge and the localized states are demonstrated to emerge at the disclination in the TCI phase but vanish in the trivial phase. The experimental discovery of bulk-disclination correspondence unveils a novel fundamental phenomenon and a new paradigm for exploring topological materials.
197 - B. Q. Lv , H. M. Weng , B. B. Fu 2015
Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chi ral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
The BaAl$_4$ prototype crystal structure is the most populous of all structure types, and is the building block for a diverse set of sub-structures including the famous ThCr$_2$Si$_2$ family that hosts high-temperature superconductivity and numerous magnetic and strongly correlated electron systems. The MA$_4$ family of materials (M=Sr, Ba, Eu; A=Al, Ga, In) themselves present an intriguing set of ground states including charge and spin orders, but have largely been considered as uninteresting metals. Using electronic structure calculations, symmetry analysis and topological quantum chemistry techniques, we predict the exemplary compound BaAl$_4$ to harbor a three-dimensional Dirac spectrum with non-trivial topology and possible nodal lines crossing the Brillouin zone, wherein one pair of semi-Dirac points with linear dispersion along the $k_z$ direction and quadratic dispersion along the $k_x/k_y$ direction resides on the rotational axis with $C_{4v}$ point group symmetry. Electrical transport measurements reveal the presence of an extremely large, unsaturating positive magnetoresistance in BaAl$_4$ despite an uncompensated band structure, and quantum oscillations and angle-resolved photoemission spectroscopy measurements confirm the predicted multiband semimetal structure with pockets of Dirac holes and a Van Hove singularity (VHS) remarkably consistent with the theoretical prediction. We thus present BaAl$_4$ as a new topological semimetal, casting its prototype status into a new role as building block for a vast array of new topological materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا