ﻻ يوجد ملخص باللغة العربية
The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on GEn, GMn, GpE, and GpM. Such a flavor separation of the form factors became possible up to 3.4 GeV2 with recent data on GEn from Hall A at JLab. At a negative four-momentum transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be almost constant, and for each of F2 and F1 individually, the d-quark portions of both form factors drop continuously with increasing Q2.
The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the se
Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon
By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on $^2H$ and $^3He$) important experimental insights have recently been gained into the flavor compositions of nucleon elect
A group theoretical derivation of a relation between the N --> Delta charge quadrupole transition and neutron charge form factors is presented.
We compute nucleon and Roper e.m. elastic and transition form factors using a symmetry-preserving treatment of a contact-interaction. Obtained thereby, the e.m. interactions of baryons are typically described by hard form factors. In contrasting this