ﻻ يوجد ملخص باللغة العربية
PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variable radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is ~50 mas (~120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of omega ~ -40 deg and a magnetization parameter of sigma~0.005.
Observing the famous high-mass, eccentric X-ray and gamma-ray binary PSR B1259-63/LS 2883 with Chandra, we detected X-ray emitting clumps moving from the binary with speeds of about 0.1 of the speed of light, possibly with acceleration. The clumps ar
We present the analysis of the Chandra X-ray Observatory observations of the eccentric gamma-ray binary PSR B1259-63/LS 2883. The analysis shows that the extended X-ray feature seen in previous observations is still moving away from the binary with a
We examine changes of the $gamma$-ray intensity observed from the direction of the binary system PSR B1259-63/LS 2883 during campaigns around its three periastron passages. A simple and straightforward method is applied to the published data obtained
PSR B1259-63/LS 2883 is a very high energy (VHE; E > 100 GeV) gamma-ray emitting binary consisting of a 48 ms pulsar orbiting around a Be star with a period of 3.4 years. The Be star features a circumstellar disk which is inclined with respect to the
The binary of the pulsar PSRB1259$-$63 and the Be star LS 2883 has been observed at the 2010 and 2014 periastron passages in the near-infrared (NIR) bands using the IRSF/SIRIUS and SIRPOL. The light curves in the J-,H-, and Ks-bands are almost identi