ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

173   0   0.0 ( 0 )
 نشر من قبل Peter von Neumann-Cosel
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle two-hole (2p-2h) states.



قيم البحث

اقرأ أيضاً

Experiments investigating the fine structure of the IsoScalar Giant Monopole Resonance (ISGMR) of 48Ca were carried out with a 200 MeV alpha inelastic-scattering reaction, using the high energy-resolution capability and the zero-degree setup at the K 600 magnetic spectrometer of iThemba LABS, Cape Town, South Africa. Considerable fine structure is observed in the energy region of the ISGMR. Characteristic energy scales are extracted from the experimental data by means of a wavelet analysis and compared with the state-of-the-art theoretical calculations within a Skyrme-RPA (random phase approximation) approach using the finite-rank separable approximation with the inclusion of phonon-phonon coupling (PPC). Good agreement was observed between the experimental data and the theoretical predictions.
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.
415 - B.K. Nayak , U. Garg , M. Koss 2009
The excitation and subsequent proton decay of the isoscalar giant dipole resonance (ISGDR) in $^{208}$Pb have been investigated via the $^{208}$Pb($alpha, alpha^{prime}p)^{207}$Tl reaction at 400 MeV. Excitation of the ISGDR has been identified by th e difference-of-spectra method. The enhancement of the ISGDR strength at high excitation energies observed in the multipole-decomposition-analysis of the singles $^{208}$Pb($alpha,alpha^{prime}$) spectra is not present in the excitation energy spectrum obtained in coincidence measurement. The partial branching ratios for direct proton decay of ISGDR to low-lying states of $^{207}$Tl have been determined and the results are compared with predictions of continuum random-phase-approximation (CRPA) calculations.
The electric quadrupole response in $^{112,114}$Sn isotopes is investigated by energy-density functional (EDF) and three-phonon quasiparticle-phonon model (QPM) theory with special emphasis on 2$^+$ excitations located above the first collective quad rupole state and below 5 MeV. Additional quadrupole strength clustering as a sequence of states similar to the recently observed pygmy quadrupole resonance in $^{124}$Sn is found. The spectral distributions and transition densities of these 2$^+$ states show special features being compatible with oscillations of a neutron skin against the isospin-symmetric nuclear core. Furthermore, two new ($p$, $p gamma$) Doppler-shift attenuation (DSA) coincidence experiments were performed at the SONIC@HORUS setup. Quadrupole states with excitation energies up to 4.2 MeV were populated in $^{112,114}$Sn. Lifetimes and branching ratios were measured allowing for the determination of the reduced quadrupole transition strengths to the ground state. A stringent comparison of the new data to EDF+QPM theory in $^{112}$Sn and $^{114}$Sn isotopes hints at the occurrence of a low-energy quadrupole mode of unique character which could be interpreted as pygmy quadrupole resonance.
98 - M. Hedden , U. Garg , B. Kharraja 2001
The isoscalar giant dipole resonance (ISGDR) has been investigated in 208Pb using inelastic scattering of 400 MeV alpha particles at forward angles, including 0deg. Using the superior capabilities of the Grand Raiden spectrometer, it has been possibl e to obtain spectra devoid of any instrumental background. The ISGDR strength distribution has been extracted from a multipole-composition of the observed spectra. The implication of these results on the experimental value of nuclear incompressibility are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا