ترغب بنشر مسار تعليمي؟ اضغط هنا

Search of X-ray emission from roAp stars: The case of gamma Equulei

424   0   0.0 ( 0 )
 نشر من قبل Beate Stelzer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Stelzer




اسأل ChatGPT حول البحث

The detection of X-ray emission from Ap stars can be an indicator for the presence of magnetic activity and dynamo action, provided different origins for the emission, such as wind shocks and close late-type companions, can be excluded. Here we report on results for gamma Equu, the only roAp star for which an X-ray detection is reported in ROSAT catalogs. We use high resolution imaging in X-rays with Chandra and in the near-infrared with NACO/VLT that allow us to spatially resolve companions down to ~1 and ~0.06 separations, respectively. The bulk of the X-ray emission is associated with a companion of gamma Equu identified in our NACO image. Assuming coevality with the primary roAp star (~900 Myr), the available photometry for the companion points at a K-type star with ~0.6 M_sun. Its X-ray properties are in agreement with the predictions for its age and mass. An excess of photons with respect to the expected background and contribution from the nearby companion is observed near the optical position of gamma Equu. We estimate an X-ray luminosity of log L_x [erg/s] = 26.6 and log(L_x/L_bol) = -7.9 for this emission. A small offset between the optical and the X-ray image leaves some doubt on its association with the roAp star. The faint X-ray emission that we tentatively ascribe to the roAp star is difficult to explain as a solar-like stellar corona due to its very low L_x/L_bol level and the very long rotation period of gamma Equu. It could be produced in magnetically confined wind shocks implying a mass loss rate of ~10^(-14) M_sun/yr or from an additional unknown late-type companion at separation ~0.4. If confirmed by future deeper X-ray observations this emission could point at the origin for the presence of radioactive elements on some roAp stars.



قيم البحث

اقرأ أيضاً

Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to comp are the predicted and observed location of a star on theoretical evolutionary tracks in a H-R diagram. This requires the best possible determinations of stellar mass, radius, luminosity and abundances. To derive its fundamental parameters, we observed the well-known rapidly oscillating Ap star, $gamma$ Equ, using the visible spectro-interferometer VEGA installed on the optical CHARA array. We computed the calibrated squared visibility and derived the limb-darkened diameter. We used the whole energy flux distribution, the parallax and this angular diameter to determine the luminosity and the effective temperature of the star. We obtained a limb-darkened angular diameter of 0.564~$pm$~0.017~mas and deduced a radius of $R$~=~2.20~$pm$~0.12~${rm R_{odot}}$. Without considering the multiple nature of the system, we derived a bolometric flux of $(3.12pm 0.21)times 10^{-7}$ erg~cm$^{-2}$~s$^{-1}$ and an effective temperature of 7364~$pm$~235~K, which is below the effective temperature that has been previously determined. Under the same conditions we found a luminosity of $L$~=~12.8~$pm$~1.4~${rm L_{odot}}$. When the contribution of the closest companion to the bolometric flux is considered, we found that the effective temperature and luminosity of the primary star can be, respectively, up to $sim$~100~K and up to $sim$~0.8~L$_odot$ smaller than the values mentioned above.These new values of the radius and effective temperature should bring further constraints on the asteroseismic modelling of the star.
276 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all a vailable exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
115 - Sandro Mereghetti 2011
Stellar evolutionary models predict that most of the early type subdwarf stars in close binary systems have white dwarf companions. More massive companions, such as neutron stars or black holes, are also expected in some cases. The presence of compac t stars in these systems can be revealed by the detection of X-rays powered by accretion of the subdwarfs stellar wind or by surface thermal emission. Using the Swift satellite, we carried out a systematic search for X-ray emission from a sample of twelve subdwarf B stars which, based on optical studies, have been suggested to have degenerate companions. None of our targets was detected, but the derived upper limits provide one of the few observational constraints on the stellar winds of early type subdwarfs. If the presence of neutron star companions is confirmed, our results constrain the mass loss rates of some of these subdwarf B stars to values <10^{-13}-10^{-12} Msun/yr.
169 - G. Rauw , Y. Naze , N.J. Wright 2014
We report on the analysis of the Chandra-ACIS data of O, B and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is in vestigated. The O-stars in Cyg,OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 +/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 +/- 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.
Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-therm al radio emission from the bow shock of BD+43$^deg$ 3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LAT data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100 MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for Zeta Ophiuchi by a factor $approx$ 5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا