ﻻ يوجد ملخص باللغة العربية
Entanglement criteria for general (pure or mixed) states of systems consisting of two identical fermions are introduced. These criteria are based on appropriate inequalities involving the entropy of the global density matrix describing the total system, on the one hand, and the entropy of the one particle reduced density matrix, on the other one. A majorization-related relation between these two density matrices is obtained, leading to a family of entanglement criteria based on Renyis entropic measure. These criteria are applied to various illustrative examples of parametrized families of mixed states. The dependence of the entanglement detection efficiency on Renyis entropic parameter is investigated. The extension of these criteria to systems of $N$ identical fermions is also considered.
We derive several entanglement criteria for bipartite continuous variable quantum systems based on the Shannon entropy. These criteria are more sensitive than those involving only second-order moments, and are equivalent to well-known variance produc
We derive inseparability criteria for the phase space representation of quantum states in terms of variants of Wehrls entropy. In contrast to entropic criteria involving differential entropies of marginal phase space distributions, our criteria are b
We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact correspondence between them arises when the states are constrained to have a definite local number parity. Moreover, for arbitrary states in
We introduce a general bipartite-like representation and Schmidt decomposition of an arbitrary pure state of $N$ indistinguishable fermions, based on states of $M<N$ and $(N-M)$ fermions. It is directly connected with the reduced $M$- and $(N-M)$-bod
The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the a