ﻻ يوجد ملخص باللغة العربية
We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole horizon) and a sound horizon that traps k-essence. In certain cases the k-essence signals can travel faster than light and the sound horizon is inside the light horizon. Under those circumstances, k-essence signals can escape from the black hole. Eventually, the two horizons merge and the k-essence signals can no longer escape.
We show that, in the context of the two-field measure theory, any k-essence model leads to the existence of a fluid made of non-relativistic matter and cosmological constant that would explain the dark matter and dark energy problem at the same time.
We discuss a proposal on how gravitational collapse of a NEC (Null Energy Condition) violating spherically symmetric fluid distribution can avoid the formation of a zero proper volume singularity and eventually lead to a Lorentzian wormhole geometry.
We calculate the cosmological complexity under the framework of scalar curvature perturbations for a K-essence model with constant potential. In particular, the squeezed quantum states are defined by acting a two-mode squeezed operator which is chara
In the present work we investigate the stability of the k-essence models allowing upto quadratic terms of the kinetic energy. The system of field equations is written as an autonomous system in terms of dimensionless variables and the stability crite
We examine the dynamics of a self--gravitating magnetized electron gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general and appropriate and physically motivated initial conditions, we transform Ein