ترغب بنشر مسار تعليمي؟ اضغط هنا

Early-type galaxies at z~1.3. II. Masses and ages of early-type galaxies in different environments and their dependence on stellar population model assumptions

109   0   0.0 ( 0 )
 نشر من قبل Anand Raichoor
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z~1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multiwavelength (0.6-4.5 $mu$m; KPNO, Palomar, Keck, HST, Spitzer) datasets. At this redshift the contribution of the TP-AGB phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high-redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M $gtrsim$ 10^11 Msun) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses.

قيم البحث

اقرأ أيضاً

We present the Kormendy and mass-size relations for early-type galaxies (ETGs) as a function of environment at z~1.3. Our sample includes 76 visually classified ETGs with masses 10^10 < M/Msun < 10^11.5, selected in the Lynx supercluster and in the G OODS/CDF-S field, 31 ETGs in clusters, 18 in groups and 27 in the field, all with multi-wavelength photometry and HST/ACS observations. The Kormendy relation, in place at z~1.3, does not depend on the environment. The mass-size relation reveals that ETGs overall appear to be more compact in denser environments: cluster ETGs have sizes on average around 30-50% smaller than those of the local universe, and a distribution with a smaller scatter, whereas field ETGs show a mass-size relation with a similar distribution than the local one. Our results imply that (1) the mass-size relation in the field did not evolve overall from z ~ 1.3 to present; this is interesting and in contrast to the trend found at higher masses from previous works; (2) in denser environments, either ETGs have increased their size by 30-50%, on average, and spread their distributions, or more ETGs have been formed within the dense environment from not ETG progenitors or larger galaxies have been accreted to a pristine compact population to reproduce the mass-size relation observed in the local Universe. Our results are driven by galaxies with masses M<2*10^11Msun and those with masses M~10^11Msun follow the same trends that the entire sample. Following Valentinuzzi et al. definition of superdense ETGs, around 35-45% of our cluster sample is made of superdense ETGs.
The evolution of masses and sizes of passive (early-type) galaxies with redshift provides ideal constraints to galaxy formation models. These parameters can in principle be obtained for large galaxy samples from multi-band photometry alone. However t he accuracy of photometric masses is limited by the non-universality of the IMF. Galaxy sizes can be biased at high redshift due to the inferior quality of the imaging data. Both problems can be avoided using galaxy dynamics, and in particular by measuring the galaxies stellar velocity dispersion. Here we provide an overview of the efforts in this direction.
We present an analysis of deep WSRT observations of the HI in 33 nearby early-type galaxies selected from a sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. The sample covers both field environments and the V irgo cluster. Our analysis shows that gas accretion plays a role in the evolution of field early-type galaxies, but less so for those in clusters. For detection limits of a few times 10^6 Msun, HI is detected in about 2/3 of the field galaxies, while <10% of the Virgo objects are detected. In about half of the detections, the HI forms a regularly rotating disc or ring. All HI discs have counterparts of ionised gas and inner HI discs are also detected in molecular gas. The cold ISM is dominated by molecular gas (M_H2/M_HI ~ 10). We conclude that accretion of HI is common for field early-type galaxies, but the amount of material involved is usually small. Cluster galaxies appear not to accrete HI. The few galaxies with a significant young sub-population all have inner gas discs, but for the remaining galaxies there is no trend between stellar population and HI. Some early-type galaxies are very gas rich, but only have an old population. The stellar populations of field galaxies are typically younger than those in Virgo. This is likely related to differences in accretion history. In about 50% of the galaxies we detect a central continuum source. In many objects this emission is from a low-luminosity AGN, in some it is consistent with the observed star formation. Galaxies with HI in the central regions are more likely detected in continuum. This is due to a higher probability for star formation to occur in such galaxies and not to HI-related AGN fuelling. (Abridged)
We study the environmental dependence of stellar population properties at z ~ 1.3. We derive galaxy properties (stellar masses, ages and star formation histories) for samples of massive, red, passive early-type galaxies in two high-redshift clusters, RXJ0849+4452 and RXJ0848+4453 (with redshifts of z = 1.26 and 1.27, respectively), and compare them with those measured for the RDCS1252.9-2927 cluster at z=1.24 and with those measured for a similarly mass-selected sample of field contemporaries drawn from the GOODS-South Field. Robust estimates of the aforementioned parameters have been obtained by comparing a large grid of composite stellar population models with extensive 8-10 band photometric coverage, from the rest-frame far-ultraviolet to the infrared. We find no variations of the overall stellar population properties among the different samples of cluster early-type galaxies. However, when comparing cluster versus field stellar population properties we find that, even if the (star formation weighted) ages are similar and depend only on galaxy mass, the ones in the field do employ longer timescales to assemble their final mass. We find that, approximately 1 Gyr after the onset of star formation, the majority (75%) of cluster galaxies have already assembled most (> 80%) of their final mass, while, by the same time, fewer (35%) field ETGs have. Thus we conclude that while galaxy mass regulates the timing of galaxy formation, the environment regulates the timescale of their star formation histories.
80 - A. Rettura 2006
The purpose of this study is to explore the relationship between galaxy stellar masses, based on multiwavelength photometry spectral template fitting and dynamical masses based on published velocity dispersion measurements, for a sample of 48 early-t ype galaxies at z ~ 1 with HST/ACS morphological information. We determine photometric-stellar masses and perform a quantitative morphological analysis of cluster and field galaxies at redshift 0.6 < z < 1.2, using ground- and space-based multiwavelegth data available on the GOODS-S field and on the field around the X-ray luminous cluster RDCS1252.9-2927 at z = 1.24. We use multi-band photometry over 0.4-8um from HST/ACS, VLT/ISAAC and Spitzer/IRAC to estimate photometric-stellar masses using Composite Stellar Population (CSP) templates computed with PEGASE.2 models. We compare stellar masses with those obtained using CSPs built with Bruzual & Charlot and Maraston models. We then compare photometric-stellar mass and dynamical mass estimates as a function of morphological parameters obtained from HST/ACS imaging. Based on our sample, which spans the mass range log(Mphot)=[10, 11.5], we find that 1) PEGASE.2, BC03, M05 yield consistent photometric-stellar masses for early-type galaxies at z ~ 1 with a small scatter (0.15 dex rms); 2) adopting a Kroupa IMF, photometric-stellar masses match dynamical mass estimates for early-type galaxies with an average offset of 0.27 dex; 3) assuming a costant IMF, increasing dark matter fraction with the increasing galaxy mass can explain the observed trend.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا