ﻻ يوجد ملخص باللغة العربية
Model dependence of multipole analysis has been explored through energy-dependent and single-energy fits to pion photoproduction data. The MAID energy-dependent solution has been used as input for an event generator producing realistic pseudo data. These were fitted using the SAID parametrization approach to determine single-energy and energy-dependent solutions over a range of lab photon energies from 200 to 1200 MeV. The resulting solutions were found to be consistent with the input amplitudes from MAID. Fits with a $chi$-squared per datum of unity or less were generally achieved. We discuss energy regions where consistent results are expected, and explore the sensitivity of fits to the number of included single- and double-polarization observables. The influence of Watsons theorem is examined in detail.
Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the pi N -> pi N and gamma N -> pi N reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W
We present a pion photoproduction model on the free nucleon based on an Effective Lagrangian Approach (ELA) which includes the nucleon resonances ($Delta(1232)$, N(1440), N(1520), N(1535), $Delta (1620)$, N(1650), and $Delta (1700)$), in addition to
The relativistic amplitudes of pion photoproduction are evaluated by dispersion relations at t=const. The imaginary parts of the amplitudes are taken from the MAID model covering the absorption spectrum up to center-of-mass energies W = 2.2 GeV. For
The possibilities of a model-independent partial wave analysis for pion, eta or kaon photoproduction are discussed in the context of complete experiments. It is shown that the helicity amplitudes obtained from at least 8 polarization observables incl
MiniBooNE [1] and MINERvA [2] charge current {pi} + production data in the Delta region are discussed. It is argued that despite the differences in neutrino flux they measure the same dynamical mechanism of pion production and should be strongly corr