ﻻ يوجد ملخص باللغة العربية
We present results for a large number of gamma-ray burst (GRB) afterglow light curve calculations, done by combining high resolution two-dimensional relativistic hydrodynamics simulations using RAM with a synchrotron radiation code. Results were obtained for jet energies, circumburst medium densities and jet angles typical for short and underluminous GRBs, different observer angles and observer frequencies from low radio (75 MHz) to X-ray (1.5 keV). We summarize the light curves through smooth power law fits with up to three breaks, covering jet breaks for small observer angles, the rising phase for large observer angles and the rise and decay of the counterjet. All light curve data are publicly available via http://cosmo.nyu.edu/afterglowlibrary . The data can be used for model fits to observational data and as an aid for predicting observations by future telescopes such as LOFAR or SKA and will benefit the study of neutron star mergers using different channels, such as gravitational wave observations with LIGO or Virgo. For small observer angles, we find jet break times that vary significantly between frequencies, with the break time in the radio substantially postponed. Increasing the observer angle also postpones the measured jet break time. The rising phase of the light curve for large observer angle has a complex shape that can not always be summarized by a simple power law. Except for very large observer angles, the counter jet is a distinct feature in the light curve, although in practice the signal will be exceedingly difficult to observe by then.
If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pu
We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that
The X-ray emission of gamma-ray bursts (GRBs) is often characterized by an initial steep decay, followed by a nearly constant emission phase (so called plateau) which can extend up to thousands of seconds. While the steep decay is usually interpreted
The multi-messenger discovery of gravitational waves (GWs) and light from the binary neutron star (NS) merger GW170817, associated with Gamma-Ray Burst (GRB) 170817A and kilonova AT2017gfo, has marked the start of a new era in astrophysics. GW170817
Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emiss