ترغب بنشر مسار تعليمي؟ اضغط هنا

SIDIS in the target fragmentation region: polarized and transverse momentum dependent fracture functions

73   0   0.0 ( 0 )
 نشر من قبل Mauro Anselmino
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The target fragmentation region of semi-inclusive deep inelastic scattering is described at leading twist, taking beam and target polarizations into account. The formalism of polarized and transverse-momentum dependent fracture functions is developed and the observables for some specific processes are presented.

قيم البحث

اقرأ أيضاً

256 - K.B. Chen , J.P. Ma , X.B. Tong 2021
In the target fragmentation region of Semi-Inclusive Deep Inelastic Scattering, the diffractively produced hadron has small transverse momentum. If it is at order of $Lambda_{QCD}$, it prevents to make predictions with the standard collinear factoriz ation. However, in this case, differential cross-sections can be predicted by the factorization with fracture functions, diffractive parton distributions. If the transverse momentum is much larger than $Lambda_{QCD}$ but much smaller than $Q$ which is the virtuality of the virtual photon, both factorizations apply. In this case, fracture functions can be factorized with collinear parton distributions and fragmentation functions. We study the factorization up to twist-3 level and obtain gauge invariant results. They will be helpful for modeling fracture functions and useful for resummation of large logarithm of the transverse momentum appearing in collinear factorization.
We demonstrate that spontaneous transverse polarization of Lambda baryon ($Lambda$) production in $e^+e^-$ annihilation can be described using the transverse momentum dependent polarizing fragmentation functions (TMD PFFs). Using a simple Gaussian mo del, we perform an extraction of the TMD PFFs by fitting the BELLE collaborations recent measurement of the $Lambda$ transverse polarization in back-to-back $Lambda+h$ production in $e^+ e^-$ collisions, $e^{-} + e^{+} rightarrow Lambda^{uparrow}+h+X$. We find that this simple model accurately describes the experimental data for $Lambda$ production associated with pions and kaons, and we are able to determine TMD PFFs for different quark flavors. We use these newly extracted TMD PFFs to make predictions for the transverse polarization of $Lambda$ produced in semi-inclusive deep inelastic scattering at a future electron-ion collider, and find that such a polarization is around $10%$ and should be measurable.
In order to describe the hadronization of polarized quarks, we discuss an extension of the quark-jet model to transverse momentum dependent fragmentation functions. The description is based on a product ansatz, where each factor in the product repres ents one of the transverse momentum dependent splitting functions, which can be calculated by using effective quark theories. The resulting integral equations and sum rules are discussed in detail for the case of inclusive pion production. In particular, we demonstrate that the 3-dimensional momentum sum rules are satisfied naturally in this transverse momentum dependent quark-jet model. Our results are well suited for numerical calculations in effective quark theories, and can be implemented in Monte-Carlo simulations of polarized quark hadronization processes.
We develop the theoretical framework needed to study the distribution of hadrons with general polarization inside jets, with and without transverse momentum measured with respect to the standard jet axis. The key development in this paper, referred t o as polarized jet fragmentation functions, opens up new opportunities to study both collinear and transverse momentum dependent (TMD) fragmentation functions. As two examples of the developed framework, we study longitudinally polarized collinear $Lambda$ and transversely polarized TMD $Lambda$ production inside jets in both $pp$ and $ep$ collisions. We find that both observables have high potential in constraining spin-dependent fragmentation functions with sizeable asymmetries predicted, in particular, at the future Electron-Ion Collider.
121 - Xiangdong Ji , Yizhuang Liu , 2019
We show that transverse-momentum-dependent parton distribution functions (TMDPDFs), important non-perturbative quantities for describing the properties of hadrons in high-energy scattering processes such as Drell-Yan and semi-inclusive deep-inelastic scattering with observed small transverse momentum, can be obtained from Euclidean QCD calculations in the framework of large-momentum effective theory (LaMET). We present a LaMET factorization of the Euclidean quasi-TMDPDFs in terms of the physical TMDPDFs and off-light-cone soft function at leading order in $1/P^z$ expansion, with the perturbative matching coefficient satisfying a renormalization group equation. We also discuss the implementation in lattice QCD with finite-length gauge links as well as the rapidity-regularization-independent factorization for Drell-Yan cross section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا