ﻻ يوجد ملخص باللغة العربية
Lattice simulations can play an important role in the study of dynamical electroweak symmetry breaking by providing quantitative results on the nonperturbative dynamics of candidate theories. For this programme to succeed, it is crucial to identify the questions that are relevant for phenomenology, and develop the tools that will provide robust answers to these questions. The existence of a conformal window for nonsupersymmetric gauge theories, and its characterization, is one of the phenomenologically important problems that can be studied on the lattice. We summarize the recent results from studies of IR fixed points by numerical simulations, discuss their current limitations, and analyze the future perspectives.
We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we anal
We report on the spectrum of the SU(3) gauge theory with twelve flavours in the fundamental representation of the gauge group. We isolate distinctive features of the hadronic phase - the one proper of QCD at zero temperature - and the so called confo
Results are reported for the beta-function of weakly coupled conformal gauge theories on the lattice, SU(3) with Nf=14 fundamental and Nf=3 sextet fermions. The models are chosen to be close to the upper end of the conformal window where perturbation
Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for $mathcal{N}=1$ supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative $R$-charges.
We propose a novel constraint on the gauge dynamics of strongly interacting gauge theories stemming from the a theorem. The inequality we suggest is used to provide a lower bound on the conformal window of four dimensional gauge theories.