ﻻ يوجد ملخص باللغة العربية
Previous work has shown that the macroscopic structure of the theory of quantum gravity defined by causal dynamical triangulations (CDT) is compatible with that of a de Sitter universe. After emphasizing the strictly nonperturbative nature of this semiclassical limit we present a detailed study of the three-volume data, which allows us to re-confirm the de Sitter structure, exhibit short-distance discretization effects, and make a first detailed investigation of the presence of higher-order curvature terms in the effective action for the scale factor. Technically, we make use of a novel way of fixing the total four-volume in the simulations.
We consider the model of hard dimers coupled to two-dimensional Causal Dynamical Triangulations (CDT) with all dimer types present and solve it exactly subject to a single restriction. Depending on the dimer weights there are, in addition to the usua
Causal dynamical triangulations (CDT) constitute a background independent, nonperturbative approach to quantum gravity, in which the gravitational path integral is approximated by the weighted sum over causally well-behaving simplicial manifolds i.e.
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from nume
We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using
We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.