ﻻ يوجد ملخص باللغة العربية
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail upon two nonlinear effective resistivities for flux cutting (rho_parallel) and flux flow (rho_perp), and their ratio r = rho_parallel/rho_perp. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle phi. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J_c(phi) that makes the vortex arc unstable.
We discuss predictions of five proposed theories for the critical state of type-II superconductors accounting for both flux cutting and flux transport (depinning). The theories predict different behaviours for the ratio $E_y/E_z$ of the transverse an
The current distribution across the thickness of a current-carrying rectangular film in the Meissner state was established long ago by the London brothers. The distribution across the width is more complicated but was later shown to be highly non-uni
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-elemen
The order of the vortex state in La_{1.9} Sr_{0.1} CuO_{4} is probed using muon spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines.
To address unsolved fundamental problems of the intermediate state (IS), the equilibrium magnetic flux structure and the critical field in a high purity type-I superconductor (indium film) are investigated using magneto-optical imaging with a 3D vect