ترغب بنشر مسار تعليمي؟ اضغط هنا

A binary merger origin for inflated hot Jupiter planets

91   0   0.0 ( 0 )
 نشر من قبل H. C. Spruit
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We hypothesize that hot Jupiters with inflated sizes represent a separate planet formation channel,the merging of two low-mass stars. We show that the abundance and properties of W UMa stars and low mass detached binaries are consistent with their being possible progenitors. The degree of inflation of the transiting hot Jupiters correlates with their expected spiral-in life time by tidal dissipation, and this could indicate youth if the stellar dissipation parameter Q* is sufficiently low. Several Jupiter-mass planets can form in the massive compact disk formed in a merger event. Gravitational scattering between them can explain the high incidence of excentric, inclined, and retrograde orbits. If the population of inflated planets is indeed formed by a merger process, their frequency should be much higher around blue stragglers than around T Tauri stars.



قيم البحث

اقرأ أيضاً

In the present paper we report the discovery of a new hot Jupiter, EPIC211089792 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25d, a mass of 0.73 +/- 0.04 Mjup, a nd a radius of 1.19 +/- 0.02 Rjup. The host star is a relatively bright (V=12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of Lithium, we find that the system might be as young as about 450 Myr. The observation of the Rossiter-McLaughlin effect shows the planet is aligned with respect to the stellar spin. Given the deep transit (20mmag), the magnitude of the star and the presence of a nearby stellar companion, the planet is a good target for both space- and ground-based transmission spectroscopy, in particular in the near-infrared where the both stars are relatively bright.
Context. The detection of planets orbiting chemically peculiar stars is very scarcely known in the literature. Aims. To determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet wit h 1.31 MJup detected by transits, being one of the more massive and rapidly rotating planet hosts to date. We aimed to derive a complete chemical pattern for this star, in order to compare it with those of chemically peculiar stars. Methods. We carried out a detailed abundance determination in the planet host star KELT-17 via spectral synthesis. Stellar parameters were estimated iteratively by fitting Balmer line profiles and imposing the Fe ionization balance, using the program SYNTHE together with plane-parallel ATLAS12 model atmospheres. Specific opacities for an arbitrary composition and microturbulence velocity vmicro were calculated through the Opacity Sampling (OS) method. The abundances were determined iteratively by fitting synthetic spectra to metallic lines of 16 different chemical species using the program SYNTHE. The complete chemical pattern of KELT-17 was compared to the recently published average pattern of Am stars. We estimated the stellar radius by two methods: a) comparing the synthetic spectral energy distribution with the available photometric data and the Gaia parallax, and b) using a Bayesian estimation of stellar parameters using stellar isochrones. Results. We found overabundances of Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, Zr, and Ba, together with subsolar values of Ca and Sc. Notably, the chemical pattern agrees with those recently published of Am stars, being then KELT-17 the first exoplanet host whose complete chemical pattern is unambiguously identified with this class. The stellar radius derived by two different methods agrees to each other and with those previously obtained in the literature.
We report the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting a mildly evolved host star. We identified the initial transit signal in the KELT-North survey data and established the planetary nature of the companion through pre cise follow-up photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the $V = 10.64$ host, TYC 2619-1057-1, has $T_{rm eff} = 6278 pm 51$ K, $log{g_star} = 3.89^{+0.054}_{-0.051}$, and [Fe/H] = $0.19^{+0.083}_{-0.085}$, with an inferred mass $M_{star} = 1.59^{+0.071}_{-0.091} M_odot$ and radius $R_star = 2.37 pm 0.18 R_odot$. The planetary companion has $M_{rm P} = 0.95 pm 0.14 M_{rm J}$, $R_{rm P} = 1.79^{+0.18}_{-0.17} R_{rm J}$, $log{g_{rm P}} = 2.87^{+0.097}_{-0.098}$, and density $rho_{rm P} = 0.21^{+0.075}_{-0.054}$ g cm$^{-3}$, making it one of the most inflated giant planets known. The time of inferior conjunction in ${rm BJD_{TDB}}$ is $2457088.692055 pm 0.0009$ and the period is $P = 5.0316144 pm 0.0000306$ days. Despite the relatively large separation of $sim0.07$ AU implied by its $sim 5.03$-day orbital period, KELT-12b receives significant flux of $2.93^{+0.33}_{-0.30} times 10^9$ erg s$^{-1}$ cm$^{-2}$ from its host. We compare the radii and insolations of transiting gas-giant planets around hot ($T_{rm eff} geq 6250$ K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite (TESS) to search for inflated giants in longer-period orbits.
79 - JF Donati , C Moutou , L Malo 2016
Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets ar e born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of period 4.93 d and semi-amplitude 75 m/ s, detected with a false alarm probability <0.03%. We find that this signal is fully unrelated to the 2.741-d rotation period of V830 Tau and we attribute it to the presence of a 0.77 Jupiter mass planet orbiting at a distance of 0.057 au from the host star. Our result demonstrates that hot Jupiters can migrate inwards in <2 Myr, most likely as a result of planet-disc interactions, and thus yields strong support to the theory of giant planet migration in gaseous protoplanetary discs.
We report the discovery of NGTS-2b, an inflated hot-Jupiter transiting a bright F5V star (2MASS J14202949-3112074; $T_{rm eff}$=$6478^{+94}_{-89}$ K), discovered as part of the Next Generation Transit Survey (NGTS). The planet is in a P=4.51 day orbi t with mass $0.74^{+0.13}_{-0.12}$ M$_{J}$, radius $1.595^{+0.047}_{-0.045}$ R$_{J}$ and density $0.226^{+0.040}_{-0.038}$ g cm$^{-3}$; therefore one of the lowest density exoplanets currently known. With a relatively deep 1.0% transit around a bright V=10.96 host star, NGTS-2b is a prime target for probing giant planet composition via atmospheric transmission spectroscopy. The rapid rotation ($vsin$i=$15.2pm0.8$ km s$^{-1}$) also makes this system an excellent candidate for Rossiter-McLaughlin follow-up observations, to measure the sky-projected stellar obliquity. NGTS-2b was confirmed without the need for follow-up photometry, due to the high precision of the NGTS photometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا