ﻻ يوجد ملخص باللغة العربية
We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10^9 GeV from gamma-ray bursts (GRBs) based on data from the second flight of the ANtarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E^-4 prompt neutrino fluence of 2.5x10^17 GeV^3/cm^2 between 10^8 and 10^12 GeV from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10^9 GeV, and the strongest limit above 10^8 GeV.
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive ou
IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if GRBs are responsible for the observed cosmic-ray flux above $10^{18}$ eV. Two separate analyses using the half-complete
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information
The Milagro telescope monitors the northern sky for 100 GeV to 100 TeV transient emission through continuous very high energy wide-field observations. The large effective area and ~100 GeV energy threshold of Milagro allow it to detect very high ener