ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of variable tunneling rates in silicon quantum dots

179   0   0.0 ( 0 )
 نشر من قبل Alessandro Rossi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reliable detection of single electron tunneling in quantum dots (QD) is paramount to use this category of device for quantum information processing. Here, we report charge sensing in a degenerately phosphorus-doped silicon QD by means of a capacitively coupled single-electron tunneling device made of the same material. Besides accurate counting of tunneling events in the QD, we demonstrate that this architecture can be operated to reveal asymmetries in the transport characteristic of the QD. Indeed, the observation of gate voltage shifts in the detectors response as the QD bias is changed is an indication of variable tunneling rates.



قيم البحث

اقرأ أيضاً

We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p-type and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus we are able to study both transpo rt regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction leading to higher charge noise in the p-regime.
The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.
RF reflectometry offers a fast and sensitive method for charge sensing and spin readout in gated quantum dots. We focus in this work on the implementation of RF readout in accumulation-mode gate-defined quantum dots, where the large parasitic capacit ance poses a challenge. We describe and test two methods for mitigating the effect of the parasitic capacitance, one by on-chip modifications and a second by off-chip changes. We demonstrate that these methods enable high-performance charge readout in Si/SiGe quantum dots, achieving a fidelity of 99.9% for a measurement time of 1 $mu$s.
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger( weaker) than the quasiparticle tunneling peaks at $|V_{sd}|=2Delta/e$ for odd(even) occupation. We attribute the enhanced $Delta$-peak to an interplay between Kondo-correlations and Andreev tunneling in dots with an odd number of spins, and substantiate this interpretation by a poor mans scaling analysis.
We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon placed approx. 60 nm from the island. We show that resonances in the nanoribbon can be used to detect individual charging events on the quantum dot. The charging induced potential change on the quantum dot causes a step-like change of the current in the charge detector. The relative change of the current ranges from 10% up to 60% for detecting individual charging events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا