ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Wavelength Terahertz Spin-Flip Laser Based on a Magnetic Point-Contact Array

95   0   0.0 ( 0 )
 نشر من قبل Anatoli Kadigrobov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel design for a single-mode, truly sub-wavelength THz disk laser based on a nano-composite gain medium comprising an array of metal/ferromagnetic point contacts embedded in a thin dielectric layer. Stimulated emission of light occurs in the point contacts as a result of spin-flip relaxation of spin-polarized electrons that are injected from the ferromagnetic side of the contacts. Ultra-high electrical current densities in the contacts and a dielectric material with a large refractive index, neither condition being achievable in conventional semiconductor media, allows the thresholds of lasing to be overcome for the lowest-order modes of the disk, hence making single-mode operation possible.



قيم البحث

اقرأ أيضاً

Electron charge transport through a quantum point contact (QPC) driven by an asymmetric spin bias is studied. A large charge current is induced when the transmission coefficient of the QPC jumps from one integer plateau to the next. Furthermore, for an open external circuit, the induced charge bias instead of the charge current is found to be quite large. It provides an efficient and practical way to detect spin bias by using a very simple device, a QPC or a STM tip. In addition, with the aid of magnetic field, polarization direction of the spin bias can also be determined.
A proposal of a spin separator based on the spin Zeeman effect in Y-shaped nanostructure with a quantum point contact is presented. Our calculations show that the appropriate tuning of the quantum point contact potential and the external magnetic fie ld leads to the spin separation of the current: electrons with opposite spins flow through the different output branches. We demonstrate that this effect is robust against the scattering on impurities. The proposed device can also operate as a spin detector, in which -- depending on the electron spin -- the current flows through one of the output branches.
In the presence of strong magnetic fields the electronic bandstructure of graphene drastically changes. The Dirac cone collapses into discrete non-equidistant Landau levels, which can be externally tuned by changing the magnetic field. In contrast to conventional materials, specific Landau levels are selectively addressable using circularly polarized light. Exploiting these unique properties, we propose the design of a tunable laser operating in the technologically promising terahertz spectral range. To uncover the many-particle physics behind the emission of light, we perform a fully quantum mechanical investigation of the non-equilibrium dynamics of electrons, phonons, and photons in optically pumped Landau-quantized graphene embedded into an optical cavity. The gained microscopic insights allow us to predict optimal experimental conditions to realize a technologically promising terahertz laser.
The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here we study the additional effects due to an external magnetic field. Combined with the measured condu ctance, the measured magnetoresistance provides detailed information on these states (e.g. their localization length, the energy difference and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures.
77 - B. Brun , F. Martins , S. Faniel 2018
We introduce a new scanning probe technique derived from scanning gate microscopy (SGM) in order to investigate thermoelectric transport in two-dimensional semiconductor devices. The thermoelectric scanning gate Microscopy (TSGM) consists in measurin g the thermoelectric voltage induced by a temperature difference across a device, while scanning a polarized tip that locally changes the potential landscape. We apply this technique to perform interferometry of the thermoelectric transport in a quantum point contact (QPC). We observe an interference pattern both in SGM and TSGM images, and evidence large differences between the two signals in the low density regime of the QPC. In particular, a large phase jump appears in the interference fringes recorded by TSGM, which is not visible in SGM. We discuss this difference of sensitivity using a microscopic model of the experiment, based on the contribution from a resonant level inside or close to the QPC. This work demonstrates that combining scanning gate microscopy with thermoelectric measurements offers new information as compared to SGM, and provides a direct access to the derivative of the device transmission with respect to energy, both in amplitude and in phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا