ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulated emission and absorption of photons in magnetic point contacts: toward metal-based spin-lasers

187   0   0.0 ( 0 )
 نشر من قبل Yu. G. Naidyuk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Point contacts between high anisotropy ferromagnetic SmCo5 and normal metal Cu are used to achieve a strong spin-population inversion in the contact core. Subjected to microwave irradiation in resonance with the Zeeman splitting in Cu, the inverted spin-population relaxes through stimulated spin-flip photon emission, detected as peaks in the point contact resistance. Resonant spin-flip photon absorption is detected as resistance minima, corresponding to sourcing the photon field energy into the electrical circuit. These results demonstrate fundamental mechanisms that are potentially useful for designing metallic spin-based lasers.

قيم البحث

اقرأ أيضاً

We report resistive switching in voltage biased point contacts (PCs) based on series of van der Waals transition metals tellurides (TMTs) such as MeTe2 (Me=Mo, W) and TaMeTe4 (Me= Ru, Rh, Ir). The switching occurs between a low resistive metallic-typ e state, which is the ground state, and a high resistive semiconducting-type state by applying certain bias voltage (<1V), while reverse switching takes place by applying voltage of opposite polarity. The origin of the effect can be formation of domain in PC core by applying a bias voltage, when a strong electric field (about 10kV/cm) modifies the crystal structure and controls its polarization. In addition to the discovery of the switching effect in PCs, we also suggest a simple method of material testing before functionalizing them, which offers a great advantage in finding suitable novel substances. The new functionality of studied TMTs arising from switchable domains in submicron hetero-structures that are promising, e.g., for non-volatile resistive random access memory (RRAM) engineering.
Excitation of magnons or spin-waves driven by nominally unpolarized transport currents in point contacts of normal and ferromagnetic metals is probed by irradiating the contacts with microwaves. Two characteristic dynamic effects are observed: a rect ification of off-resonance microwave current by spin-wave nonlinearities in the point contact conductance, and a resonant stimulation of spin-wave modes in the nano-contact core by the microwave field. These observations provide a direct evidence that the magnetoconductance effects observed are due to GHz spin dynamics at the ferromagnetic interface driven by the spin transfer torque effect of the transport current.
We report on the experimental observation of the non-linear analogue of the optical spin Hall effect under highly non-resonant circularly polarized excitation of an exciton polariton condensate in a GaAs/AlGaAs microcavity. Initially circularly polar ized polariton condensates propagate over macroscopic distances while the collective condensate spins coherently precess around an effective magnetic field in the sample plane performing up to four complete revolutions.
288 - P. Blake , R. Yang , S. V. Morozov 2009
There is an increasing amount of literature concerning electronic properties of graphene close to the neutrality point. Many experiments continue using the two-probe geometry or invasive contacts or do not control samples macroscopic homogeneity. We believe that it is helpful to point out some problems related to such measurements. By using experimental examples, we illustrate that the charge inhomogeneity induced by spurious chemical doping or metal contacts can lead to large systematic errors in assessing graphenes transport properties and, in particular, its minimal conductivity. The problems are most severe in the case of two-probe measurements where the contact resistance is found to strongly vary as a function of gate voltage.
We propose to use a point contact between a ferromagnetic and a normal metal in the presence of a magnetic field for creating a large inverted spin-population of hot electrons in the contact core. The key point of the proposal is that when these hot electrons relax by flipping their spin, microwave photons are emitted, with a frequency tunable by the applied magnetic field. While point contacts is an established technology their use as a photon source is a new and potentially very useful application. We show that this photon emission process can be detected by means of transport spectroscopy and demonstrate stimulated emission of radiation in the 10-100 GHz range for a model point contact system using a minority-spin ferromagnetic injector. These results can potentially lead to new types of lasers based on spin injection in metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا