ﻻ يوجد ملخص باللغة العربية
We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range $f=0.1-3.5$GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 meter scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to the intrinsic unbalance between the capacitive and the inductive coupling $C_m/C_o eq L_m/L_o$. A practical way to restore this symmetry has been introduced (hereafter `electrostatic compensation), allowing for a cross-talk suppression factor of around $times 12$ and a rise-time reduction by 200ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1GHz per 2 meter for typical float glass -based RPCs ($tan delta|_{glass} = 0.025pm0.005$). It is further shown that `electrostatic compensation can be achieved for an arbitrary number of strips as long as the nature of the coupling is `short-range, that is an almost exact assumption for typical strip-line RPCs. Evidence for deviations from the dominant TEM propagation mode has been observed, although they seem to have negligible influence in practical signal observables. This work extends the bandwidth of previous studies by a factor of almost $times 20$.
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with active area 40 cm $times$ 20 cm has been developed at SINP, Kolkata. Detailed response of the developed detector was studied with the pulsed electron beam from ELBE at Helmholt
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thi
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s
In this paper we propose a new concept for streamer quenching in Resistive Plate Chambers (RPCs). In our approach, the multiplication process is quenched by the appropriate design of a mechanical structure inserted between the two resistive electrode