ترغب بنشر مسار تعليمي؟ اضغط هنا

Signal coupling and signal integrity in multi-strip Resistive Plate Chambers used for timing applications

106   0   0.0 ( 0 )
 نشر من قبل Diego Gonzalez-Diaz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range $f=0.1-3.5$GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 meter scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to the intrinsic unbalance between the capacitive and the inductive coupling $C_m/C_o eq L_m/L_o$. A practical way to restore this symmetry has been introduced (hereafter `electrostatic compensation), allowing for a cross-talk suppression factor of around $times 12$ and a rise-time reduction by 200ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1GHz per 2 meter for typical float glass -based RPCs ($tan delta|_{glass} = 0.025pm0.005$). It is further shown that `electrostatic compensation can be achieved for an arbitrary number of strips as long as the nature of the coupling is `short-range, that is an almost exact assumption for typical strip-line RPCs. Evidence for deviations from the dominant TEM propagation mode has been observed, although they seem to have negligible influence in practical signal observables. This work extends the bandwidth of previous studies by a factor of almost $times 20$.



قيم البحث

اقرأ أيضاً

263 - Ushasi Datta 2015
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with active area 40 cm $times$ 20 cm has been developed at SINP, Kolkata. Detailed response of the developed detector was studied with the pulsed electron beam from ELBE at Helmholt z-Zentrum Dresden-Rossendorf. In this report the response of SINP developed MMRPC with different controlling parameters is described in details. The obtained time resolution ($sigma_t$) of the detector after slew correction was 91.5$ pm $3 ps. Position resolution measured along ($sigma_x$) and across ($sigma_y$) the strip was 2.8$pm$0.6 cm and 0.58 cm, respectively. The measured absolute efficiency of the detector for minimum ionizing particle like electron was 95.8$pm$1.3 $%$. Better timing resolution of the detector can be achieved by restricting the events to a single strip. The response of the detector was mainly in avalanche mode but a few percentage of streamer mode response was also observed. A comparison of the response of these two modes with trigger rate was studied
342 - Y.J. Sun , C. Li , M. Shao 2008
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thi ck gas gaps arranged as a double stack. Each read-out strip is 2.5 cm wide and 90 cm long. The signals are read-out at both ends of each strip. Cosmic ray tests indicate a time resolution of ~70 ps and a detection efficiency of greater than 95%. Beam tests performed at T963 at Fermilab indicate a time resolution of 60-70 ps and a spatial resolution of ~1 cm along the strip direction.
393 - Jose Repond 2014
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl ow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
124 - R. Hadjiiska 2013
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s oftware and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.
In this paper we propose a new concept for streamer quenching in Resistive Plate Chambers (RPCs). In our approach, the multiplication process is quenched by the appropriate design of a mechanical structure inserted between the two resistive electrode s. We show that stable performance is achieved with binary gas mixtures based on argon and a small fraction of isobutane. Fluorocarbons, deemed responsible for the degradation of the electrode inner surface of RPC detectors, are thus fully eliminated from the gas mixture. This design {also resulted} in a simplified assembly procedure. Preliminary results obtained with a few prototypes of ``Mechanically Quenched RPCs and some prospects for future developments are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا