ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of methanol maser rings

137   0   0.0 ( 0 )
 نشر من قبل Anna Bartkiewicz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of studies of a new class of 6.7 GHz methanol maser sources with a ring-like emission structure discovered recently with the EVN. We have used the VLA to search for water masers at 22 GHz and radio continuum at 8.4 GHz towards a sample of high-mass star forming regions showing a ring-like distribution of methanol maser spots. Using the Gemini telescopes we found mid-infrared (MIR) counterparts of five methanol rings with a resolution of 0.15. The centres of methanol maser rings are located within, typically, only 0.2 of the MIR emission peak, implying their physical relation with a central star. These results strongly support a scenario wherein the ring-like structures appear at the very early stage of massive star formation before either water-maser outflows or H II regions are seen.



قيم البحث

اقرأ أيضاً

We investigate which structures the 6.7 GHz methanol masers trace in the environment of high-mass protostar candidates by observing a homogenous sample of methanol masers selected from Torun surveys. We also probed their origins by looking for associ ated H II regions and IR emission. We selected 30 methanol sources with improved position accuracies achieved using MERLIN and another 3 from the literature. We imaged 31 of these using the European VLBI Networks expanded array of telescopes with 5-cm (6-GHz) receivers. We used the VLA to search for 8.4 GHz radio continuum counterparts and inspected Spitzer GLIMPSE data at 3.6-8 um from the archive. High angular resolution images allowed us to analyze the morphology and kinematics of the methanol masers in great detail and verify their association with radio continuum and mid-infrared emission. A new class of ring-like methanol masers in star--forming regions appeared to be suprisingly common, 29 % of the sample. The new morphology strongly suggests that methanol masers originate in the disc or torus around a proto- or a young massive star. However, the maser kinematics indicate the strong influence of outflow or infall. This suggests that they form at the interface between the disc/torus and a flow. This is also strongly supported by Spitzer results because the majority of the masers coincide with 4.5 um emission to within less than 1 arcsec. Only four masers are associated with the central parts of UC H II regions. This implies that 6.7 GHz methanol maser emission occurs before H II region observable at cm wavelengths is formed.
We present the results of unbiased 22 GHz H2O water and 44 GHz class I CH3OH methanol maser surveys in the central 7x10 arcmin area of NGC 1333 and two additional mapping observations of a 22 GHz water maser in a ~3x3arcmin area of the IRAS4A region. In the 22 GHz water maser survey of NGC 1333 with sensitivity of sigma~0.3Jy, we confirmed masers toward H2O(B) in the region of HH 7-11 and IRAS4B. We also detected new water masers at ~20arcsec away in the western direction of IRAS4B or ~25arcsec away in the southern direction of IRAS4A. We could not however find young stellar objects or molecular outflows associated with them. They showed two different velocity components of ~0 and ~16 km/s, which are blue- and red-shifted relative to the adopted systemic velocity of ~7 km/s for NGC 1333. They also showed time variabilities in both intensity and velocity from multi-epoch observations and an anti-correlation between the intensities of the blue- and the red-shifted velocity components. We suggest that the unidentified powering source of these masers might be in the earliest evolutionary stage of star formation before the onset of molecular outflows. Finding this kind of water masers is only possible by an unbiased blind survey. In the 44 GHz methanol maser survey with sensitivity of sigma~0.5 Jy, we confirmed masers toward the IRAS4A2 and the eastern shock region of the IRAS2A. Both sources are also detected in 95 and 132 GHz methanol maser lines. In addition, we had new detections of methanol masers at 95 and 132 GHz toward IRAS4B. In terms of the isotropic luminosity, we detected the methanol maser sources brighter than ~5x1025 erg/s from our unbiased survey.
Ring-like distributions of the 6.7 GHz methanol maser spots at milliarcsecond scales represent a family of molecular structures of unknown origin associated with high-mass young stellar objects (HMYSOs). We aim to study G23.657-00.127, which has a ne arly circular ring of the 6.7 GHz methanol masers, and is the most suitable target to test hypotheses on the origin of the maser rings. The European Very Long Baseline Interferometry Network (EVN) was used at three epochs spanning 10.3 yr to derive the spatio-kinematical structure of the 6.7 GHz methanol maser emission in the target. The maser cloudlets, lying in a nearly symmetric ring, expand mainly in the radial direction with a mean velocity of 3.2 km s$^{-1}$. There is an indication that the radial component of the velocity increases with cloudlets distance from the ring centre. The tangential component does not show any clear evidence for rotation of the cloudlets or any relationship with distance from the ring centre. The blue-shifted masers may hint at an anticlockwise rotation of cloudlets in the southern part of the ring. The nearly circular structure of the ring clearly persisted for more than 10 yr. Interferometric data demonstrated that about one quarter of cloudlets show significant variability in their brightness, although the overall spectrum was non-variable in single-dish studies. Taking into account the three-dimensional motion of the maser cloudlets and their spatial distribution along a small ring, we speculate about two possible scenarios where the methanol masers trace either a spherical outflow arising from an (almost) edge-on disc, or a wide angle wind at the base of a protostellar jet. The latter is associated with near- and mid-infrared emission detected towards the ring. High angular resolution images of complementary (thermal) tracers are needed to interpret the environment of methanol masers.
123 - S.P. Ellingsen 2011
We report the results of a search for class II methanol masers at 37.7, 38.3 and 38.5 GHz towards a sample of 70 high-mass star formation regions. We primarily searched towards regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesised to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions and morphologies of the water maser emission and relate them to the methanol maser emission recently mapped with Very Long Baseline Interferometry. A sample of 31 methanol maser sources was searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz methanol maser line with the 32 m Torun dish simultaneously. Water maser clusters were detected towards 27 sites finding 15 new sources. The detection rate of water maser emission associated with methanol sources was as high as 71%. In a large number of objects (18/21) the structure of water maser is well aligned with that of the extended emission at 4.5 $mu$m confirming the origin of water emission from outflows. The sources with methanol emission with ring-like morphologies, which likely trace a circumstellar disk/torus, either do not show associated water masers or the distribution of water maser spots is orthogonal to the major axis of the ring. The two maser species are generally powered by the same high-mass young stellar object but probe different parts of its environment. The morphology of water and methanol maser emission in a minority of sources is consistent with a scenario that 6.7 GHz methanol masers trace a disc/torus around a protostar while the associated 22 GHz water masers arise in outflows. The majority of sources in which methanol maser emission is associated with the water maser appears to trace outflows. The two types of associations might be related to different evolutionary phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا