ترغب بنشر مسار تعليمي؟ اضغط هنا

The magic of disc-worlds: non-rotating methanol masers

65   0   0.0 ( 0 )
 نشر من قبل Huib Jan van Langevelde
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent studies of methanol masers, a substantial fraction of the objects show maser components aligned in large-scale elliptical configurations. These can be readily interpreted as rings centred on a high mass star in formation, seen in projection. Remarkably, most of these rings do not show signs of rotation, but rather the radial motions dominate. This must mean that their dynamics are governed by other than gravitational forces. In particular, we have studied the methanol masers around Cep A in detail, where it can be argued that the methanol masers show signs of infall. In this paper we discuss the dynamics of the Cep A methanol maser and sources from the Torun blind survey to argue that at least in a fraction of sources methanol masers could be associated with the shock interface between the large scale accretion, regulated by the magnetic field, and a 1000-AU scale circumstellar disk. We discuss the validity of such a model for the overall population of methanol maser sources.

قيم البحث

اقرأ أيضاً

(Abridged) Astronomical masers have been effective tools to study magnetic fields for many years. In particular, methanol can be used to probe different parts of protostars such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. We investigate the polarization properties of selected methanol maser transitions in light of newly calculated methanol Lande g-factors and considering hyperfine components. We compare our results with previous observations and we evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. We run simulations using the radiative transfer code CHAMP. We find a dependence of linear and circular polarization fractions on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarization and some of the peculiar features seen in the S-shape of observed V-profiles. Methanol masers are not significantly affected by non-Zeeman effects. Our models show that for methanol maser emission, both the linear and circular polarization percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and on maser beaming angles. Better constraints on the brightness temperature will help in understand about the extent to which non-Zeeman effects contribute to the observed polarization percentages. In order to detect separate hyperfine components, an intrinsic thermal line width significantly smaller than the hyperfine separation is required.
We report the result of a systematic methanol observation toward IRAS 19312+1950. The properties of the SiO, H2O and OH masers of this object are consistent with those of mass-losing evolved stars, but some other properties are difficult to explain i n the standard scheme of stellar evolution in its late stage. Interestingly, a tentative detection of radio methanol lines was suggested toward this object by a previous observation. To date, there are no confirmed detections of methanol emission towards evolved stars, so investigation of this possible detection is important to better understand the circumstellar physical/chemical environment of IRAS 19312+1950. In this study, we systematically observed multiple methanol lines of IRAS 19312+1950 in the lambda=3mm, 7mm, and 13mm bands, and detected 6 lines including 4 thermal lines and 2 class I maser lines. We derived basic physical parameters including kinetic temperature and relative abundances by fitting a radiative transfer model. According to the derived excitation temperature and line profiles, a spherically expanding outflow lying at the center of the nebulosity is excluded from the possibilities for methanol emission regions. The detection of class I methanol maser emission suggests that a shock region is involved in the system of IRAS 19312+1950. If the central star of IRAS 19312+1950 is an evolved star as suggested in the past, the class I maser detected in the present observation is the first case detected in an interaction region between an evolved star outflow and ambient molecular gas.
We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) cata log.Water maser emission is detected in 39 (51%) sources, of which 15 are new detections. Methanol maser emission at 44 GHz and 95 GHz is found in 25 (32%) and 19 (25%) sources, of which 21 and 13 sources are newly detected, respectively. We find 4 high-velocity (> 30 km/s) water maser sources, including 3 dominant blue- or redshifted outflows.The 95 GHz masers always appear with the 44 GHz maser emission. They are strongly correlated with 44 GHz masers in velocity, flux density, and luminosity, while they are not correlated with either water or 6.7 GHz class II methanol masers. The average peak flux density ratio of 95 GHz to 44 GHz masers is close to unity, which is two times higher than previous estimates. The flux densities of class I methanol masers are more closely correlated with the associated BGPS core mass than those of water or class II methanol masers. Using the large velocity gradient (LVG) model and assuming unsaturated class I methanol maser emission, we derive the fractional abundance of methanol to be in a range of 4.2*10^-8 to 2.3*10^-6, with a median value of 3.3pm2.7*10^-7.
78 - P.D. Stack 2011
We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instru ment. As part of this process we have developed a new technique for calibrating linear polarisation spectral line observations. This calibration method gives results consistent with more traditional techniques, but requires much less observing time on the telescope. We have made the first polarisation measurements of a number of 6.7 GHz methanol masers and find linear polarisation at levels of a few - 10% in most of the sources we observed, consistent with previous results. We also investigated the circular polarisation produced by Zeeman splitting in the 6.7 GHz methanol maser G9.62+0.20 to get an estimate of the line of sight magnetic field strength of 35+/-7 mG.
Context. The importance of the magnetic field in high-mass-star formation is not yet fully clear and there are still many open questions concerning its role in the accretion processes and generation of jets and outflows. In the past few years, masers have been successfully used to probe the magnetic field morphology and strength at scales of a few au around massive protostars, by measuring linear polarisation angles and Zeeman splitting. The massive protostar IRAS 18089-1732 is a well studied high-mass-star forming region, showing a hot core chemistry and a disc-outflow system. Previous SMA observations of polarised dust revealed an ordered magnetic field oriented around the disc of IRAS 18089-1732. Aims. We want to determine the magnetic field in the dense region probed by 6.7 GHz methanol maser observations and compare it with observations in dust continuum polarisation, to investigate how the magnetic field in the compact maser region relates to the large-scale field around massive protostars. Methods. We reduced MERLIN observations at 6.7 GHz of IRAS 18089-1732 and we analysed the polarised emission by methanol masers. Results. Our MERLIN observations show that the magnetic field in the 6.7 GHz methanol maser region is consistent with the magnetic field constrained by the SMA dust polarisation observations. A tentative detection of circularly polarised line emission is also presented. Conclusions. We found that the magnetic field in the maser region has the same orientation as in the disk. Thus the large-scale field component, even at the au scale of the masers, dominates over any small-scale field fluctuations. We obtained, from the circular polarisation tentative detection, a field strength along the line of sight of 5.5 mG which appeared to be consistent with the previous estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا