ترغب بنشر مسار تعليمي؟ اضغط هنا

A Domain Specific Ontology Based Semantic Web Search Engine

123   0   0.0 ( 0 )
 نشر من قبل Debajyoti Mukhopadhyay Prof.
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since its emergence in the 1990s the World Wide Web (WWW) has rapidly evolved into a huge mine of global information and it is growing in size everyday. The presence of huge amount of resources on the Web thus poses a serious problem of accurate search. This is mainly because todays Web is a human-readable Web where information cannot be easily processed by machine. Highly sophisticated, efficient keyword based search engines that have evolved today have not been able to bridge this gap. So comes up the concept of the Semantic Web which is envisioned by Tim Berners-Lee as the Web of machine interpretable information to make a machine processable form for expressing information. Based on the semantic Web technologies we present in this paper the design methodology and development of a semantic Web search engine which provides exact search results for a domain specific search. This search engine is developed for an agricultural Website which hosts agricultural information about the state of West Bengal.



قيم البحث

اقرأ أيضاً

Engineering a Web search engine offering effective and efficient information retrieval is a challenging task. This document presents our experiences from designing and developing a Web search engine offering a wide spectrum of functionalities and we report some interesting experimental results. A rather peculiar design choice of the engine is that its index is based on a DBMS, while some of the distinctive functionalities that are offered include advanced Greek language stemming, real time result clustering, and advanced link analysis techniques (also for spam page detection).
Academic search engines allow scientists to explore related work relevant to a given query. Often, the user is also aware of the aspect to retrieve a relevant document. In such cases, existing search engines can be used by expanding the query with te rms describing that aspect. However, this approach does not guarantee good results since plain keyword matches do not always imply relevance. To address this issue, we define and solve a novel academic search task, called aspect-based retrieval, which allows the user to specify the aspect along with the query to retrieve a ranked list of relevant documents. The primary idea is to estimate a language model for the aspect as well as the query using a domain-specific knowledge base and use a mixture of the two to determine the relevance of the article. Our evaluation of the results over the Open Research Corpus dataset shows that our method outperforms keyword-based expansion of query with aspect with and without relevance feedback.
Within a search session users often apply different search terms, as well as different variations and combinations of them. This way, they want to make sure that they find relevant information for different stages and aspects of their information tas k. Research questions which arise from this search ap- proach are: Where do users get all the ideas, hints and suggestions for new search terms or their variations from? How many ideas come from the user? How many from outside the IR system? What is the role of the used search sys- tem? To investigate these questions we used data from two experiments: first, from a user study with eye tracking data; second, from a large-scale log analy- sis. We found that in both experiments a large part of the search terms has been explicitly seen or shown before on the interface of the search system.
Background: The web has become a primary information resource about illnesses and treatments for both medical and non-medical users. Standard web search is by far the most common interface for such information. It is therefore of interest to find out how well web search engines work for diagnostic queries and what factors contribute to successes and failures. Among diseases, rare (or orphan) diseases represent an especially challenging and thus interesting class to diagnose as each is rare, diverse in symptoms and usually has scattered resources associated with it. Methods: We use an evaluation approach for web search engines for rare disease diagnosis which includes 56 real life diagnostic cases, state-of-the-art evaluation measures, and curated information resources. In addition, we introduce FindZebra, a specialized (vertical) rare disease search engine. FindZebra is powered by open source search technology and uses curated freely available online medical information. Results: FindZebra outperforms Google Search in both default setup and customised to the resources used by FindZebra. We extend FindZebra with specialized functionalities exploiting medical ontological information and UMLS medical concepts to demonstrate different ways of displaying the retrieved results to medical experts. Conclusions: Our results indicate that a specialized search engine can improve the diagnostic quality without compromising the ease of use of the currently widely popular web search engines. The proposed evaluation approach can be valuable for future development and benchmarking. The FindZebra search engine is available at http://www.findzebra.com/.
Information overload is a prevalent challenge in many high-value domains. A prominent case in point is the explosion of the biomedical literature on COVID-19, which swelled to hundreds of thousands of papers in a matter of months. In general, biomedi cal literature expands by two papers every minute, totalling over a million new papers every year. Search in the biomedical realm, and many other vertical domains is challenging due to the scarcity of direct supervision from click logs. Self-supervised learning has emerged as a promising direction to overcome the annotation bottleneck. We propose a general approach for vertical search based on domain-specific pretraining and present a case study for the biomedical domain. Despite being substantially simpler and not using any relevance labels for training or development, our method performs comparably or better than the best systems in the official TREC-COVID evaluation, a COVID-related biomedical search competition. Using distributed computing in modern cloud infrastructure, our system can scale to tens of millions of articles on PubMed and has been deployed as Microsoft Biomedical Search, a new search experience for biomedical literature: https://aka.ms/biomedsearch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا