ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical analysis of super-Bloch oscillations

66   0   0.0 ( 0 )
 نشر من قبل Kazue Kudo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several recent studies have investigated the dynamics of cold atoms in optical lattices subject to AC forcing; the theoretically predicted renormalization of the tunneling amplitudes has been verified experimentally. Recent observations include global motion of the atom cloud, such as giant Super-Bloch Oscillations (SBOs). We show that, in order to understand unexplained features of SBOs, in addition to the renormalization of the tunneling, a new and important phase correction must be included. For Fermionic systems with strong attractive interactions, one may engineer different types of collisions and recollisions between bound-pairs and unpaired atoms.


قيم البحث

اقرأ أيضاً

Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes.
We report the direct observation and characterization of position-space Bloch oscillations using an ultracold gas in a tilted optical lattice. While Bloch oscillations in momentum space are a common feature of optical lattice experiments, the real-sp ace center-of-mass dynamics are typically too small to resolve. Tuning into the regime of rapid tunneling and weak force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
We report the experimental realization of a new kind of optical lattice for ultra-cold atoms where arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary lattices. Two collinear lasers, with sli ghtly different commensurate wavelengths and retroreflected on a mirror, generate a superlattice potential with a periodic beat-note profile where the regions with large amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with negligible interactions in the presence of a small force. The observed dynamics between sites separated by ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might find direct application in atom-based technologies like trapped atom interferometers and quantum simulators.
101 - Andrea Sacchetti 2016
We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BECs atoms is linear; this fact suggest us a new experimental procedure for the measurement of the scattering length of atoms.
76 - Bo Zhu , Shi Hu , Honghua Zhong 2021
We propose to measure band topology via quantized drift of Bloch oscillations in a two-dimensional Harper-Hofstadter lattice subjected to tilted fields in both directions. When the difference between the two tilted fields is large, Bloch oscillations uniformly sample all momenta, and hence the displacement in each direction tends to be quantized at multiples of the overall period, regardless of any momentum of initial state. The quantized displacement is related to a reduced Chern number defined as a line integral of Berry curvature in each direction, providing an almost perfect measurement of Chern number. Our scheme can apply to detect Chern number and topological phase transitions not only for the energy-separable band, but also for energy-inseparable bands which cannot be achieved by conventional Thouless pumping or integer quantum Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا