ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of the $S=-1$ resonance X(2265) in the reaction $pp -> X + K^+$ at 2.50 and 2.85 GeV

89   0   0.0 ( 0 )
 نشر من قبل Toshimitsu Yamazaki
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyzing DISTO data of $pp -> p Lambda K^+$ at $T_p = 2.50$ and 2.85 GeV to populate a previously reported X(2265) resonance with $M_X = 2267$ MeV/$c^2$ and $Gamma_X = 118$ MeV at 2.85 GeV, we found that the production of X(2265) at 2.50 GeV is much less than that at 2.85 GeV (less than 10%), though it is expected from a kinematical consideration to be produced as much as 33% of that at 2.85 GeV. The small population of X(2265) at 2.50 GeV is consistent with the very weak production of Lambda (1405) at the same incident energy toward its production threshold, thus indicating that Lambda (1405) plays an important role as a doorway state for the formation of X(2265).

قيم البحث

اقرأ أيضاً

We have analyzed data of the DISTO experiment on the exclusive pp -> p Lambda K+ reaction at 2.85 GeV to search for a strongly bound compact K-pp (= X) state to be formed in the pp -> K+ + X reaction. The observed spectra of the K+ missing-mass and t he p Lambda invariant-mass with high transverse momenta of p and K+ revealed a broad distinct peak with a mass M_X = 2265 +- 2 (stat) +- 5 (syst) MeV/c2 and a width Gamma_X = 118 +- 8 (stat) +- 10 (syst) MeV.
A search for $K^-pp$ bound state (the lightest kaonic nucleus) has been performed using the $gamma d rightarrow K^+ pi^- rm{X}$ reaction at E$_gamma$=1.5-2.4 GeV at LEPS/SPring-8. The differential cross section of $K^+ pi^-$ photo-production off deut erium has been measured for the first time in this energy region, and a bump structure was searched for in the inclusive missing mass spectrum. A statistically significant bump structure was not observed in the region from 2.22 to 2.36 GeV/$c^2$, and the upper limits of the differential cross section for the $K^-pp$ bound state production were determined to be 0.1$-$0.7 $mu$ b (95$%$ confidence level) for a set of assumed binding energy and width values.
We have observed a $K^-pp$-like structure in the $d(pi^+,K^+)$ reaction at 1.69 GeV/$c$. In this reaction $Lambda(1405)$ hyperon resonance is expected to be produced as a doorway to form the $K^-pp$ through the $Lambda^*prightarrow K^-pp$ process. Ho wever, most of the produced $Lambda(1405)$s would escape from deuteron without secondary reactions. Therefore, coincidence of high-momentum ($>$ 250~MeV/$c$) proton(s) in large emission angles ($39^circ<theta_{lab.}<122^circ$) was requested to enhance the signal-to-background ratio. A broad enhancement in the proton coincidence spectra are observed around the missing-mass of 2.27 GeV/$c^2$, which corresponds to the $K^-pp$ binding energy of 95 $^{+18}_{-17}$ (stat.) $^{+30}_{-21}$ (syst.) MeV and the width of 162 $^{+87}_{-45}$ (stat.) $^{+66}_{-78}$ (syst.) MeV.
The polarization of the secondary protons in the inelastic (p,p) reaction on the 40Ca nucleus and the relative cross sections of this reaction at 1 GeV of the initial proton energy were measured in a wide range of the scattered proton momenta (K) at lab angles theta=13.5 and theta=21.0 degrees. The final protons from the reaction were detected by means of a magnetic spectrometer equipped with multiwire proportional chamber polarimeter.
The $Theta^+$ pentaquark baryon was searched for via the $pi^-pto K^-X$ reaction in a missing-mass resolution of 1.4 MeV/$c^2$(FWHM) at J-PARC. $pi^-$ meson beams were incident on the liquid hydrogen target with the beam momentum of 1.92 GeV/$c$. No peak structure corresponding to the $Theta^+$ mass was observed. The upper limit of the production cross section averaged over the scattering angle of 2$^{circ}$ to 15$^{circ}$ in the laboratory frame was obtained to be 0.26 $mu$b/sr in the mass region of 1.51$-$1.55 GeV/$c^2$.The upper limit of the $Theta^+$ decay width using the effective Lagrangian approach was obtained to be 0.72 MeV/$c^2$ and 3.1 MeV/$c^2$ for $J^P_{Theta}=1/2^+$ and $J^P_{Theta}=1/2^-$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا