ترغب بنشر مسار تعليمي؟ اضغط هنا

Growing Massive Black Holes in a Local Group Environment: the Central Supermassive, Slowly Sinking, and Ejected Populations

101   0   0.0 ( 0 )
 نشر من قبل Miroslav Micic Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the growth of < 10^7 Msun black holes that reside at the centers of spiral and field dwarf galaxies in a Local Group type of environment. We use merger trees from a cosmological N-body simulation known as Via Lactea II (VL-2) as a framework to test two merger-driven semi-analytic recipes for black hole growth that include dynamical friction, tidal stripping, and gravitational wave recoil in over 20,000 merger tree realizations. First, we apply a Fundamental Plane limited (FPL) model to the growth of Sgr A*, which drives the central black hole to a maximum mass limited by the Black Hole Fundamental Plane after every merger. Next, we present a new model that allows for low-level Prolonged Gas Accretion (PGA) during the merger. We find that both models can generate a Sgr A* mass black hole. We predict a population of massive black holes in local field dwarf galaxies - if the VL-2 simulation is representative of the growth of the Local Group, we predict up to 35 massive black holes (< 10^6 Msun) in Local Group field dwarfs. We also predict that hundreds of < 10^5 Msun black holes fail to merge, and instead populate the Milky Way halo, with the most massive of them at roughly the virial radius. In addition, we find that there may be hundreds of massive black holes ejected from their hosts into the nearby intergalactic medium due to gravitational wave recoil. We discuss how the black hole population in the Local Group field dwarfs may help to constrain the growth mechanism for Sgr A*.

قيم البحث

اقرأ أيضاً

We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently th e sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
Scalar-tensor theories of gravity generally violate the strong equivalence principle, namely compact objects have a suppressed coupling to the scalar force, causing them to fall slower. A black hole is the extreme example where such a coupling vanish es, i.e. black hole has no scalar hair. Following earlier work, we explore observational scenarios for detecting strong equivalence principle violation, focusing on galileon gravity as an example. For galaxies in-falling towards galaxy clusters, the supermassive black hole can be offset from the galaxy center away from the direction of the cluster. Hence, well resolved images of galaxies around nearby clusters can be used to identify the displaced black hole via the star cluster bound to it. We show that this signal is accessible with imaging surveys, both ongoing ones such as the Dark Energy Survey, and future ground and space based surveys. Already, the observation of the central black hole in M~87 places new constraints on the galileon parameters, which we present here. $mathcal{O}(1)$ matter couplings are disfavored for a large region of the parameter space. We also find a novel phenomenon whereby the black hole can escape the galaxy completely in less than one billion years.
A perfect irrotational fluid with the equation of state of dust, Irrotational Dark Matter (IDM), is incapable of virializing and instead forms a cosmoskeleton of filaments with supermassive black holes at the joints. This stark difference from the st andard cold dark matter (CDM) scenario arises because IDM must exhibit potential flow at all times, preventing shell-crossing from occurring. This scenario is applicable to general non-oscillating scalar-field theories with a small sound speed. Our model of combined IDM and CDM components thereby provides a solution to the problem of forming the observed billion-solar-mass black holes at redshifts of six and higher. In particular, as a result of the reduced vortical flow, the growth of the black holes is expected to be more rapid at later times as compared to the standard scenario.
128 - R. Gilli , F. Calura , A. DErcole 2017
We addressed the so far unexplored issue of outflows induced by exponentially growing power sources, focusing on early supermassive black holes (BHs). We assumed that these objects grow to $10^9;M_{odot}$ by z=6 by Eddington-limited accretion and con vert 5% of their bolometric output into a wind. We first considered the case of energy-driven and momentum-driven outflows expanding in a region where the gas and total mass densities are uniform and equal to the average values in the Universe at $z>6$. We derived analytic solutions for the evolution of the outflow, finding that, for an exponentially growing power with e-folding time $t_{Sal}$, the late time expansion of the outflow radius is also exponential, with e-folding time of $5t_{Sal}$ and $4t_{Sal}$ in the energy-driven and momentum-driven limit, respectively. We then considered energy-driven outflows produced by QSOs at the center of early dark matter halos of different masses and powered by BHs growing from different seeds. We followed the evolution of the source power and of the gas and dark matter density profiles in the halos from the beginning of the accretion until $z=6$. The final bubble radius and velocity do not depend on the seed BH mass but are instead smaller for larger halo masses. At z=6, bubble radii in the range 50-180 kpc and velocities in the range 400-1000 km s$^{-1}$ are expected for QSOs hosted by halos in the mass range $3times10^{11}-10^{13};M_{odot}$. By the time the QSO is observed, we found that the total thermal energy injected within the bubble in the case of an energy-driven outflow is $E_{th}sim5 times 10^{60}$ erg. This is in excellent agreement with the value of $E_{th}=(6.2pm 1.7)times 10^{60}$ erg measured through the detection of the thermal Sunyaev-Zeldovich effect around a large population of luminous QSOs at lower redshift. [abridged]
In this work, we analyze the role of AGN feedback in quenching star formation for massive, central galaxies in the local Universe. In particular, we compare the prediction of two semi-analytic models (L-GALAXIES and SAGE) featuring different schemes for AGN feedback, with the SDSS DR7 taking advantage of a novel technique for identifying central galaxies in an observational dataset. This enables us to study the correlation between the model passive fractions, which is predicted to be suppressed by feedback from an AGN, and the observed passive fractions in an observationally motivated parameter space. While the passive fractions for observed central galaxies show a good correlation with stellar mass and bulge mass, passive fractions in L-GALAXIES correlate with the halo and black hole mass. For SAGE, the passive fraction correlate with the bulge mass as well. Among the two models, SAGE has a smaller scatter in the black hole - bulge mass (M_BH - M_Bulge) relation and a slope that agrees better with the most recent observations at z sim 0. Despite the more realistic prescription of radio mode feedback in SAGE, there are still tensions left with the observed passive fractions and the distribution of quenched galaxies. These tensions may be due to the treatment of galaxies living in non-resolved substructures and the resulting higher merger rates that could bring cold gas which is available for star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا