ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic processes revealed by spectrally resolved high-J CO lines in low-mass star-forming regions with Herschel-HIFI

164   0   0.0 ( 0 )
 نشر من قبل Umut A. Yildiz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars in NGC1333. The observations show several energetic components including shocked and quiescent gas. Radiative transfer models are used to quantify the C18O envelope abundance which require a jump in the abundance at an evaporation temperature, T_ev ~25 K, providing new direct evidence of a CO ice evaporation zone around protostars. The abundance in the outermost part of the envelope, X_0, is within the canonical value of 2x10^-4; however the inner abundance, X_in, is found around a factor of 3-5 lower than X_0.



قيم البحث

اقرأ أيضاً

Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Hersch el (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
Context; Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate- or high-mass star-forming regions. As part of the Water In Star-f orming regions with Herschel (WISH) key program, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10^5 L_sol. Aims; We analyse the CO line emission towards a large sample of protostars in terms of both line intensities and profiles. Methods; Herschel-HIFI spectra of the 12CO 10-9, 13CO 10-9 and C18O 5-4, 9-8 and 10-9 lines are analysed for a sample of 51 YSOs. In addition, JCMT spectra of 12CO 3-2 and C18O 3-2 extend this analysis to cooler gas components. Results; All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs. This relation can be extended to larger (extragalactic) scales. The majority of the detected 12CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the C18O spectra are mainly fitted with a single Gaussian. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad 12CO 3-2 and 10-9 velocity components correlate with those of the narrow C18O 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range.
104 - C. Joblin , E. Bron , C. Pinto 2018
In bright photodissociation regions (PDRs) associated to massive star formation, the presence of dense clumps that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas em ission in high-excitation lines. We aim at presenting a comprehensive view of the modeling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and are analyzed using the Meudon PDR code. A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to Jup=23 in the Orion Bar (Jup=19 in NGC7023), can only originate from small structures of typical thickness of a few 1e-3 pc and at high thermal pressures (Pth~1e8 K cm-3). Compiling data from the literature, we found that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help rationalising the analysis of high-J CO emission in massive star formation and provides an observational constraint for models that study stellar feedback on molecular clouds.
Water In Star-forming regions with Herschel (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The He terodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC1333 in several H2-16O, H2-18O, and CO transitions. Line profiles are resolved for five H16O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km/s), medium-broad (~5-10 km/s), and narrow (<5 km/s) components. The H2-18O emission is only detected in broad 1_10-1_01 lines (>20 km/s), indicating that its physical origin is the same as for the broad H2-16O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (<1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities.
(Abridged) We study the response of the gas to energetic processes associated with high-mass star formation and compare it with studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The far-IR line emission and ab sorption of CO, H$_2$O, OH, and [OI] reveals the excitation and the relative contribution of different species to the gas cooling budget. Herschel-PACS spectra covering 55-190 um are analyzed for ten high-mass star forming regions of various luminosities and evolutionary stages at spatial scales of ~10^4 AU. Radiative transfer models are used to determine the contribution of the envelope to the far-IR CO emission. The close environments of high-mass YSOs show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines. CO lines from J=14-13 up to typically 29-28 show a single temperature component, Trot~300 K. Typical H$_2$O temperatures are Trot~250 K, while OH has Trot~80 K. Far-IR line cooling is dominated by CO (~75 %) and to a smaller extent by OI (~20 %), which increases for the most evolved sources. H$_2$O is less important as a coolant for high-mass sources because many lines are in absorption. Emission from the envelope is responsible for ~45-85 % of the total CO luminosity in high-mass sources compared with only ~10 % for low-mass YSOs. The highest-J lines originate most likely from shocks, based on the strong correlation of CO and H$_2$O with physical parameters of the sources from low- to high-masses. Excitation of warm CO is very similar for all mass regimes, whereas H$_2$O temperatures are ~100 K higher for high-mass sources than the low-mass YSOs. Molecular cooling is ~4 times more important than cooling by [OI]. The total far-IR line luminosity is about 10$^{-3}$ and 10$^{-5}$ times lower than the dust luminosity for the low- and high-mass YSOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا