ﻻ يوجد ملخص باللغة العربية
This note deals with arbitrary Morse-Smale diffeomorphisms in dimension 3 and extends ideas from cite{GrLaPo}, cite{GrLaPo1}, where gradient-like case was considered. We introduce a kind of Morse-Lyapunov function, called dynamically ordered, which fits well dynamics of diffeomorphism. The paper is devoted to finding conditions to the existence of such an energy function, that is, a function whose set of critical points coincides with the non-wandering set of the considered diffeomorphism. We show that the necessary and sufficient conditions to the existence of a dynamically ordered energy function reduces to the type of embedding of one-dimensional attractors and repellers of a given Morse-Smale diffeomorphism on a closed 3-manifold.
The paper is devoted to finding conditions to the existence of a self-indexing energy function for Morse-Smale diffeomorphisms on a 3-manifold. These conditions involve how the stable and unstable manifolds of saddle points are embedded in the ambien
Given a compact smooth manifold $M$ with non-empty boundary and a Morse function, a pseudo-gradient Morse-Smale vector field adapted to the boundary allows one to build a Morse complex whose homology is isomorphic to the (absolute or relative to the
Denote by $DC(M)_0$ the identity component of the group of compactly supported $C^infty$ diffeomorphisms of a connected $C^infty$ manifold $M$, and by $HR$ the group of the homeomorphisms of $R$. We show that if $M$ is a closed manifold which fibers
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio
For a 3-manifold $M$ with $b_1(M)=1$ fibered over $S^1$ and the fiberwise gradient $xi$ of a fiberwise Morse function on $M$, we introduce the notion of amidakuji-like path (AL-path) on $M$. An AL-path is a piecewise smooth path on $M$ consisting of