ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal emission at 4.5 and 8 micron of WASP-17b, an extremely large planet in a slightly eccentric orbit

77   0   0.0 ( 0 )
 نشر من قبل David Anderson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.

قيم البحث

اقرأ أيضاً

225 - P.F.L. Maxted 2012
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phas e effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.
Aims. We observe occultations of WASP-24b to measure brightness temperatures and to determine whether or not its atmosphere exhibits a thermal inversion (stratosphere). Methods. We observed occultations of WASP-24b at 3.6 and 4.5 {mu}m using the Spit zer Space Telescope. It has been suggested that there is a correlation between stellar activity and the presence of
We present high-precision radial velocity observations of WASP-17 throughout the transit of its close-in giant planet, using the MIKE spectrograph on the 6.5m Magellan Telescope at Las Campanas Observatory. By modeling the Rossiter-McLaughlin effect, we find the sky-projected spin-orbit angle to be lambda = 167.4 pm 11.2 deg. This independently confirms the previous finding that WASP-17b is on a retrograde orbit, suggesting it underwent migration via a mechanism other than just the gravitational interaction between the planet and the disk. Interestingly, our result for lambda differs by 45 pm 13 deg from the previously announced value, and we also find that the spectroscopic transit occurs 15 pm 5 min earlier than expected, based on the published ephemeris. The discrepancy in the ephemeris highlights the need for contemporaneous spectroscopic and photometric transit observations whenever possible.
84 - S. C. C. Barros 2010
We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2455335.92050 +/- 0.00074 (HJD) and the transit duration is 4.663 hours. WASP-38bs discovery was enabled due to an upgrade t o the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 +/- 80K, logg =4.3 +/- 0.1, vsini=8.6 +/- 0.4 km/s, M*=1.16 +/- 0.04 Msun and R* =1.33 +/- 0.03 Rsun, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. The planet has a mass of 2.69 +/- 0.06 Mjup and a radius of 1.09 +/-0.03 Rjup giving a density, rho_p = 2.1 +/-0.1 rho_jup. The high precision of the eccentricity e=0.0314 +/- 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 +/- 33K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V =9.4 mag), is a good candidate for followup atmospheric studies.
We report the discovery of a 7.3 Mjup exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the tenth-magnitude F5V star USNO-B1 11118-0262485 with a period of 2.243752 days and orbital eccentricity e = 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3+/-0.5 Mjup and a radius of 1.28+/-0.08 Rjup. This leads to a mean density of about 4.6 g/cm^3 making it densest transiting exoplanets yet found at an orbital period less than 3 days. We estimate this system to be at a distance of 160+/-20 pc. Spectral analysis of the host star reveals a temperature of 6475+/-100 K, log g = 4.07 cm/s^2 and vsin i = 4.9+/-1.0 km/s, and also a high lithium abundance, log N(Li} = 2.84+/-0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا