ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization of gravitational wave sources with networks of advanced detectors

201   0   0.0 ( 0 )
 نشر من قبل Sergey G. Klimenko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are in the focus of the experiments with the network of LIGO, Virgo and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms and network configurations.



قيم البحث

اقرأ أيضاً

Advanced LIGO and the next generation of ground-based detectors aim to capture many more binary coalescences through improving sensitivity and duty cycle. Earthquakes have always been a limiting factor at low frequency where neither the pendulum susp ension nor the active controls provide sufficient isolation to the test mass mirrors. Several control strategies have been proposed to reduce the impact of teleseismic events by switching to a robust configuration with less aggressive feedback. The continental United States has witnessed a huge increase in the number of induced earthquake events primarily associated with hydraulic fracking-related waste water re-injection. Effects from these differ from teleseismic earthquakes primarily because of their depth which is in turn linked to their triggering mechanism. In this paper, we discuss the impact caused due to these low magnitude regional earthquakes and explore ways to minimize the impact of induced seismicity on the detector.
Space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) design operate by synthesizing one or more interferometers from fringe velocity measurements generated by changes in the light travel time between three s pacecraft in a special set of drag-free heliocentric orbits. These orbits determine the inclination of the synthesized interferometer with respect to the ecliptic plane. Once these spacecraft are placed in their orbits, the orientation of the interferometers at any future time is fixed by Keplers Laws based on the initial orientation of the spacecraft constellation, which may be freely chosen. Over the course of a full solar orbit, the initial orientation determines a set of locations on the sky were the detector has greatest sensitivity to gravitational waves as well as a set of locations where nulls in the detector response fall. By artful choice of the initial orientation, we can choose to optimize or suppress the antennas sensitivity to sources whose location may be known in advance (e.g., the Galactic Center or globular clusters).
Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors test masses are physically displaced by an actuator in order to simulate the effects of a gravitationa l wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGOs ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectors output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians.
348 - Jue Zhang , Chunnong Zhao , Li Ju 2016
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector based on cooled silicon test masses. It is shown that there would be about 2 unstable modes per test mass, with the highest parametric gain of ~76. The importance of developing suitable instability suppression schemes is emphasized.
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and c haracterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterise key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals ---in terms of minimum parameter uncertainty--- to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا