ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter

153   0   0.0 ( 0 )
 نشر من قبل Peter Sheridan Dodds
 تاريخ النشر 2011
والبحث باللغة English




اسأل ChatGPT حول البحث

Individual happiness is a fundamental societal metric. Normally measured through self-report, happiness has often been indirectly characterized and overshadowed by more readily quantifiable economic indicators such as gross domestic product. Here, we examine expressions made on the online, global microblog and social networking service Twitter, uncovering and explaining temporal variations in happiness and information levels over timescales ranging from hours to years. Our data set comprises over 46 billion words contained in nearly 4.6 billion expressions posted over a 33 month span by over 63 million unique users. In measuring happiness, we use a real-time, remote-sensing, non-invasive, text-based approach---a kind of hedonometer. In building our metric, made available with this paper, we conducted a survey to obtain happiness evaluations of over 10,000 individual words, representing a tenfold size improvement over similar existing word sets. Rather than being ad hoc, our word list is chosen solely by frequency of usage and we show how a highly robust metric can be constructed and defended.



قيم البحث

اقرأ أيضاً

The patterns of life exhibited by large populations have been described and modeled both as a basic science exercise and for a range of applied goals such as reducing automotive congestion, improving disaster response, and even predicting the locatio n of individuals. However, these studies previously had limited access to conversation content, rendering changes in expression as a function of movement invisible. In addition, they typically use the communication between a mobile phone and its nearest antenna tower to infer position, limiting the spatial resolution of the data to the geographical region serviced by each cellphone tower. We use a collection of 37 million geolocated tweets to characterize the movement patterns of 180,000 individuals, taking advantage of several orders of magnitude of increased spatial accuracy relative to previous work. Employing the recently developed sentiment analysis instrument known as the hedonometer, we characterize changes in word usage as a function of movement, and find that expressed happiness increases logarithmically with distance from an individuals average location.
One can point to a variety of historical milestones for gender equality in STEM (science, technology, engineering, and mathematics), however, practical effects are incremental and ongoing. It is important to quantify gender differences in subdomains of scientific work in order to detect potential biases and monitor progress. In this work, we study the relevance of gender in scientific collaboration patterns in the Institute for Operations Research and the Management Sciences (INFORMS), a professional society with sixteen peer-reviewed journals. Using their publication data from 1952 to 2016, we constructed a large temporal bipartite network between authors and publications, and augmented the author nodes with gender labels. We characterized differences in several basic statistics of this network over time, highlighting how they have changed with respect to relevant historical events. We find a steady increase in participation by women (e.g., fraction of authorships by women and of new women authors) starting around 1980. However, women still comprise less than 25% of the INFORMS society and an even smaller fraction of authors with many publications. Moreover, we describe a methodology for quantifying the structural role of an authorship with respect to the overall connectivity of the network, using it to measure subtle differences between authorships by women and by men. Specifically, as measures of structural importance of an authorship, we use effective resistance and contraction importance, two measures related to diffusion throughout a network. As a null model, we propose a degree-preserving temporal and geometric network model with emergent communities. Our results suggest the presence of systematic differences between the collaboration patterns of men and women that cannot be explained by only local statistics.
The relationship between nature contact and mental well-being has received increasing attention in recent years. While a body of evidence has accumulated demonstrating a positive relationship between time in nature and mental well-being, there have b een few studies comparing this relationship in different locations over long periods of time. In this study, we estimate a happiness benefit, the difference in expressed happiness between in- and out-of-park tweets, for the 25 largest cities in the US by population. People write happier words during park visits when compared with non-park user tweets collected around the same time. While the words people write are happier in parks on average and in most cities, we find considerable variation across cities. Tweets are happier in parks at all times of the day, week, and year, not just during the weekend or summer vacation. Across all cities, we find that the happiness benefit is highest in parks larger than 100 acres. Overall, our study suggests the happiness benefit associated with park visitation is on par with US holidays such as Thanksgiving and New Years Day.
Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on soci al networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyses of eight typical events diffusion on a very large micro-blogging system, emph{Sina Weibo}, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.
This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recentl y, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا