ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective theories of connections and curvature: abelian case

186   0   0.0 ( 0 )
 نشر من قبل Jos\\'e A. Zapata
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a notion of measuring scales for quantum abelian gauge systems. At each measuring scale a finite dimensional affine space stores information about the evaluation of the curvature on a discrete family of surfaces. Affine maps from the spaces assigned to finer scales to those assigned to coarser scales play the role of coarse graining maps. This structure induces a continuum limit space which contains information regarding curvature evaluation on all piecewise linear surfaces with boundary. The evaluation of holonomies along loops is also encoded in the spaces introduced here; thus, our framework is closely related to loop quantization and it allows us to discuss effective theories in a sensible way. We develop basic elements of measure theory on the introduced spaces which are essential for the applicability of the framework to the construction of quantum abelian gauge theories.



قيم البحث

اقرأ أيضاً

A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifo ld) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions has encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to local details ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function $F_S (A)$ defined below. It covers the holonomy function in the sense that $exp{F_S (A)} = {rm Hol}(l= partial S, A)$.
269 - Roman Jackiw 1996
The gauge variance of wave functionals for a gauge theory quantized in the momentum (curvature) representation is described. It is shown that a gauge transformation gives rise to a cocycle, which for theories in two space-time dimensions is related t o the Kirillov-Kostant form. Various derivations are presented, including one based on geometric (pre-) quantization. The formalism is applied to two dimensional gravity models that are equivalently described by B-F gauge theories.
We show that Thurston geometries are solutions to a large class of 3D quadratic curvature theories, where New Massive Gravity, which was studied in arXiv:2104.00754, is a special case.
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Greens functions for a Yang--Mills theory with composite and background fields are introduced, including the generating functional of vertex Greens functions (effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator depending on the composite and background fields. On-shell independence from the choice of gauge fixing for the effective action is established. In the study of the Ward identities and gauge dependence, finite field-dependent BRST transformations with a background field are introduced and utilized on a systematic basis. On the one hand, this involves the consideration of (modified) Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial background. On the other hand, the issue of gauge dependence is studied with reference to a finite variation of the gauge Fermion. The concept of a joint introduction of composite and background fields to non-Abelian gauge theories is exemplified by the Gribov--Zwanziger theory and by the Volovich--Katanaev model of two-dimensional gravity with dynamical torsion.
It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentia ls. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three dimensional Anti de-Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا