ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944

302   0   0.0 ( 0 )
 نشر من قبل Julien Bolmont
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several models of Quantum Gravity predict Lorentz Symmetry breaking at energy scales approaching the Planck scale (10^{19} GeV). With present photon data from the observations of distant astrophysical sources, it is possible to constrain the Lorentz Symmetry breaking linear term in the standard photon dispersion relations. Gamma-ray Bursts (GRB) and flaring Active Galactic Nuclei (AGN) are complementary to each other for this purpose, since they are observed at different distances in different energy ranges and with different levels of variability. Following a previous publication of the High Energy Stereoscopic System (H.E.S.S.) collaboration, a more sensitive event-by-event method consisting of a likelihood fit is applied to PKS 2155-304 flare data of MJD 53944 (July 28, 2006) as used in the previous publication. The previous limit on the linear term is improved by a factor of ~3 up to M^{l}_{QG} > 2.1x10^{18} GeV and is currently the best result obtained with blazars. The sensitivity to the quadratic term is lower and provides a limit of M^{q}_{QG} > 6.4x10^10 GeV, which is the best value obtained so far with an AGN and similar to the best limits obtained with GRB.



قيم البحث

اقرأ أيضاً

Highly energetic, variable and distant sources such as Active Galactic Nuclei provide a good opportunity to evaluate effects due to the emission and the propagation of high energy photons. In this note, a study of possible energy-dependent time-lags with PKS 2155-304 light curve as measured by H.E.S.S. in July 2006 is presented. These time-lags could either come from the emission processes or also sign a Lorentz Symmetry breaking as predicted in some Quantum Gravity models. A Cross-Correlation function and a Wavelet Transform were used to measure the time-lags. The 95% Confidence Limit on the Quantum Gravity energy scale based on the statistical and systematic error evaluation was found to be 7x10^17 GeV considering a linear correction in the standard photon dispersion relations and assuming that emission-induced time-lags are negligible. For now, this limit is the best ever obtained with a blazar.
An analysis is presented of the optical polarimetric and multicolour photometric ($BVRJ$) behaviour of the blazar PKS 2155$-$304 during an outburst in 2010. This flare develops over roughly 117 days, with a flux doubling time $tau sim 11$ days that i ncreases from blue to red wavelengths. The polarization angle is initially aligned with the jet axis but rotates by roughly $90^circ$ as the flare grows. Two distinct states are evident at low and high fluxes. Below 18 mJy, the polarization angle takes on a wide range of values, without any clear relation to the flux. In contrast, there is a positive correlation between the polarization angle and flux above 18 mJy. The polarization degree does not display a clear correlation with the flux. We find that the photopolarimetric behaviour for the high flux state can be attributed to a variable component with a steady power-law spectral energy distribution and high optical polarization degree (13.3%). These properties are interpreted within the shock-in-jet model, which shows that the observed variability can be explained by a shock that is seen nearly edge-on. Some parameters derived for the relativistic jet within the shock-in-jet model are: $B=0.06$ G for the magnetic field, $delta=22.3$ for the Doppler factor and $Phi=2.6^circ$ for the viewing angle.
Time variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored reg ularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability Fvar in several energy bands. Lognormality is found in every energy range and the evolution of Fvar with the energy shows a similar increase both in X-rays and in TeV bands.
206 - F. Aharonian , et al. 2007
The high-frequency peaked BL Lac PKS 2155-304 at redshift z=0.116 is a well-known VHE (>100 GeV) gamma-ray emitter. Since 2002 its VHE flux has been monitored using the H.E.S.S. stereoscopic array of imaging atmospheric-Cherenkov telescopes in Namibi a. During the July 2006 dark period, the average VHE flux was measured to be more than ten times typical values observed from the object. This article focuses solely on an extreme gamma-ray outburst detected in the early hours of July 28, 2006 (MJD 53944). The average flux observed during this outburst is I(>200 GeV) = (1.72$pm$$0.05_{rm stat}$$pm$$0.34_{rm syst}$) $times$ 10$^{-9}$ cm$^{-2}$ s$^{-1}$, corresponding to ~7 times the flux, I(>200 GeV), observed from the Crab Nebula. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10$^9 M_odot$ black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.
Axion-like particles are hypothetical new light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ax ion-like particles can modify the energy spectrum of the gamma rays. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac PKS 2155-304 are used to derive conservative upper limits on the strength of the axion-like particle coupling to photons. This study gives rise to the first exclusions on axion-like particles from gamma-ray astronomy. The derived constraints apply to both light pseudo-scalar and scalar bosons that couple to the electromagnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا