ترغب بنشر مسار تعليمي؟ اضغط هنا

Status and Prospects of Fermi LAT Pulsar Blind Searches

176   0   0.0 ( 0 )
 نشر من قبل Pablo M. Saz Parkinson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blind Searches of Fermi Large Area Telescope (LAT) data have resulted in the discovery of 24 gamma-ray pulsars in the first year of survey operations, most of which remain undetected in radio, despite deep radio follow-up searches. I summarize the latest Fermi LAT blind search efforts and results, including the discovery of a new Geminga-like pulsar, PSR J0734-1559. Finally, I discuss some of the challenges faced in carrying out these searches into the future, as well as the prospects for finding additional pulsars among the large number of LAT unassociated sources.



قيم البحث

اقرأ أيضاً

140 - P. S. Ray , A. A. Abdo , D. Parent 2012
We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the worlds largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk, more than double the known population of so-called `black widow pulsars, and contain many promising candidates for inclusion in pulsar timing arrays.
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observ ations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
We report the discovery of eight gamma-ray pulsars in blind frequency searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of the eight pulsars are young (tau_c<100 kyr), energetic (Edot>10^36 erg/s), and located within the Galac tic plane (|b|<3 deg). The remaining three are older, less energetic, and located off the plane. Five pulsars are associated with sources included in the LAT bright gamma-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (tau_c=4.6 kyr) and is the most energetic (Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the newly-discovered pulsars. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. In addition, publicly available archival Chandra X-ray data allowed us to identify the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant gamma-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these can be included among the growing population of radio-quiet pulsars in our Galaxy being uncovered by the LAT, and currently numbering more than 20.
A year after emph{Fermi} was launched, the number of known gamma-ray pulsars has increased dramatically. For the first time, a sizable population of pulsars has been discovered in gamma-ray data alone. For the first time, millisecond pulsars have bee n confirmed as powerful sources of gamma-ray emission, and a whole population of these objects is seen with the LAT. The remaining gamma-ray pulsars are young pulsars, discovered via an efficient collaboration with radio and X-ray telescopes. It is now clear that a large fraction of the nearby energetic pulsars are gamma-ray emitters, whose luminosity grows with the spin-down energy loss rate. Many previously unidentified EGRET sources turn out to be pulsars. Many of the detected pulsars are found to be powering pulsar wind nebulae, and some are associated with TeV sources. The emph{Fermi} LAT is expected to detect more pulsars in gamma rays in the coming years, while multi-wavelength follow ups should detect emph{Fermi}-discovered pulsars. The data already revealed that gamma-ray pulsars generally emit fan-like beams sweeping over a large fraction of the sky and produced in the outer magnetosphere.
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated gamma-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al., 2010). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, Mmin ~ 0.0137 Msun, indicative of `Black Widow type systems. A two-year timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked gamma-ray light-curve, proving that PSR J1745+1017 is the source responsible for the gamma-ray emission seen in 1FGL J1745.5 + 1018 (2FGL J1745.6+1015; Nolan et al., 2012). We find the gamma-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially-cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا