ﻻ يوجد ملخص باللغة العربية
In order to produce high dynamic range images in radio interferometry, bright extended sources need to be removed with minimal error. However, this is not a trivial task because the Fourier plane is sampled only at a finite number of points. The ensuing deconvolution problem has been solved in many ways, mainly by algorithms based on CLEAN. However, such algorithms that use image pixels as basis functions have inherent limitations and by using an orthonormal basis that span the whole image, we can overcome them. The construction of such an orthonormal basis involves fine tuning of many free parameters that define the basis functions. The optimal basis for a given problem (or a given extended source) is not guaranteed. In this paper, we discuss the use of generalized prolate spheroidal wave functions as a basis. Given the geometry (or the region of interest) of an extended source and the sampling points on the visibility plane, we can construct the optimal basis to model the source. Not only does this gives us the minimum number of basis functions required but also the artifacts outside the region of interest are minimized.
The discrete prolate spheroidal sequences (DPSSs) are a set of orthonormal sequences in $ell_2(mathbb{Z})$ which are strictly bandlimited to a frequency band $[-W,W]$ and maximally concentrated in a time interval ${0,ldots,N-1}$. The timelimited DPSS
Prolate spheroidal wave functions provide a natural and effective tool for computing with bandlimited functions defined on an interval. As demonstrated by Slepian et al., the so called generalized prolate spheroidal functions (GPSFs) extend this appa
Deconvolution is essential for radio interferometric imaging to produce scientific quality data because of finite sampling in the Fourier plane. Most deconvolution algorithms are based on CLEAN which uses a grid of image pixels, or clean components.
Radio interferometers suffer from the problem of missing information in their data, due to the gaps between the antennas. This results in artifacts, such as bright rings around sources, in the images obtained. Multiple deconvolution algorithms have b
An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate