ترغب بنشر مسار تعليمي؟ اضغط هنا

A strongly starforming group: three massive galaxies associated with a QSO

89   0   0.0 ( 0 )
 نشر من قبل Francisco J. Carrera
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here photometric redshift confirmation of the presence of large scale structure around the z=1.82 QSO RXJ0941, which shows an overdensity of submm sources. Radio imaging confirms the presence of the submm sources and pinpoints their likely optical-NIR counterparts. Four of the five submm sources present in this field (including the QSO) have counterparts with redshifts compatible with z=1.82. We show that our photometric redshifts are robust against the use of different spectral templates. We have measured the galaxy stellar mass of the submm galaxies from their rest-frame K-band luminosity obtaining log(M*/Msun)~11.5+-0.2, slightly larger than the Schechter mass of present day galaxies, and hence indicating that most of the stellar mass is already formed. We present optical-to-radio spectral energy distributions (SEDs) of the five SCUBA sources. The emission of RXJ0941 is dominated by reprocessed AGN emission in the observed MIR range, while the starburst contribution completely dominates in the submm range. The SEDs of the other three counterparts are compatible with a dominant starburst contribution above ~24um, with star formation rates SFR~2000Msun/yr, central dust masses log(Mdust/Msun)~9+-0.5 and hence central gas masses log(Mgas/Msun)~10.7. There is very little room for an AGN contribution. From X-ray upper limits and the observed 24um flux, we derive a maximum 2-10keV X-ray luminosity of 1e44 erg/s for any putative AGN, even if they are heavily obscured. This in turn points to relatively small black holes with log(MBH/Msun)<~8 and hence stellar-to-black hole mass ratios about one order of magnitude higher than those observed in the present Universe: most of their central black hole masses are still to be accreted. Local stellar-to-black hole masses ratios can be reached if ~1.3% of the available nuclear gas mass is accreted.



قيم البحث

اقرأ أيضاً

114 - Mark R. Chun 2009
The damped and sub-damped Lyman-alpha absorption line systems in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. While most DLAs appear to be metal-poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent studies. Here we report high-resolution K-band imaging with the Keck Laser Guide Star Adaptive Optics (LGSAO) system of the field of quasar SDSSJ1323-0021 in search of the galaxy producing the z = 0.72 sub-DLA absorber. With a metallicity of 2-4 times the solar level, this absorber is of the most metal-rich systems found to date. Our data show a large bright galaxy with an angular separation of only 1.25 from the quasar, well-resolved from the quasar at the high resolution of our data. The galaxy has a magnitude of K = 17.6-17.9, which corresponds to a luminosity of ~ 3-6 L*. Morphologically, the galaxy is fit with a model with an effective radius, enclosing half the total light, of R_e = 4 kpc and a bulge-to-total ratio of 0.4-1.0, indicating a substantial bulge stellar population. Based on the mass-metallicity relation of nearby galaxies, the absorber galaxy appears to have a stellar mass > 10^{11} M_sun. Given the small impact parameter, this massive galaxy appears to be responsible for the metal-rich sub-DLA. The absorber galaxy is consistent with the metallicity-luminosity relation observed for nearby galaxies, but is near the upper end of metallicity. Our study marks the first application of LGSAO for study of structure of galaxies producing distant quasar absorbers. Finally, this study offers the first example of a massive galaxy with a substantial bulge producing a metal-rich absorber.
125 - Tomotsugu Goto 2011
Understanding the cosmic re-ionization is one of the key goals of the modern observational cosmology. High redshift QSO spectra can be used as background light sources to measure absorption by intervening neutral hydrogen. We investigate neutral hydr ogen absorption in a deep, moderate-resolution Keck/Deimos spectrum of QSO CFHQSJ2329-0301 at z=6.4. This QSO is one of the highest redshift QSOs presently known at z=6.4 but is 2.5 mag fainter than a previously well-studied QSO SDSSJ1148+5251 at z=6.4. Therefore, it has a smaller Stromgren sphere, and allows us to probe the highest redshift hydrogen absorption to date. The average transmitted flux at 5.915<z_abs<6.365 (200 comoving Mpc) is consistent with zero, in Ly_alpha, Ly_beta, and Ly_gamma absorption measurements. This corresponds to the lower limit of optical depth, tau_eff>4.9. These results are consistent with strong evolution of the optical depth at z>5.7.
Investigating the Gunn-Peterson trough of high redshift quasars (QSOs) is a powerful way to reveal the cosmic reionization. As one of such attempts, we perform a series of analyses to examine the absorption lines observed with one of the highest reds hift QSOs, PSO J006.1240+39.2219, which we previously discovered at z = 6.62. Using the Subaru telescope, we obtained medium-resolution spectrum with a total exposure time of 7.5 hours. We calculate the Ly$alpha$ transmission in different redshift bins to determine the near zone radius and the optical depth at 5.6$<$z$<$6.5. We find a sudden change in the Ly$alpha$ transmission at 5.75$<$z$<$5.86, which is consistent with the result from the literature. The near zone radius of the QSO is 5.79$pm$0.09 $p$Mpc, within the scatter of the near zone radii of other QSOs measured in previous studies. We also analyze the dark gap distribution to probe the neutral hydrogen fractions beyond the saturation limit of the Gunn-Peterson trough. We extend the measurement of the dark gaps to 5.7$<$z$<$6.3. We find that the gap widths increase with increasing redshifts, suggesting more neutral Universe at higher redshifts. However, these measurements strongly depend on the continuum modeling. As a continuum model-free attempt, we also perform the dark-pixel counting analysis, to find the upper limit of $langle x_{rm H I} rangle sim$0.6 (0.8) at $z<$5.8 ($z>$5.8). All three analyses based on this QSO show increasingly neutral hydrogen towards higher redshifts, adding precious measurements up to z$sim$6.5.
110 - Lian Tao , Hua Feng , Yue Shen 2017
PHL 6625 is a luminous quasi-stellar object (QSO) at z = 0.3954 located behind the nearby galaxy NGC 247 (z = 0.0005). Hubble Space Telescope (HST) observations revealed an arc structure associated with it. We report on spectroscopic observations wit h the Very Large Telescope (VLT) and multiwavelength observations from the radio to the X-ray band for the system, suggesting that PHL 6625 and the arc are a close pair of merging galaxies, instead of a strong gravitational lens system. The QSO host galaxy is estimated to be (4-28) x 10^10 M_sun, and the mass of the companion galaxy of is estimated to be M_* = (6.8 +/- 2.4) x 10^9 M_sun, suggesting that this is a minor merger system. The QSO displays typical broad emission lines, from which a black hole mass of about (2-5) x 10^8 M_sun and an Eddington ratio of about 0.01-0.05 can be inferred. The system represents an interesting and rare case where a QSO is associated with an ongoing minor merger, analogous to Arp 142.
We present a candidate for the most distant galaxy known to date with a photometric redshift z = 10.7 +0.6 / -0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2-sigma). This J-dropout Lyman Break Galaxy, named MACS0647- JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~8, 7, and 2, with the brighter two observed at ~26th magnitude AB (~0.15 uJy) in the WFC3/IR F160W filter (~1.4 - 1.7 um) where they are detected at >~ 12-sigma. All three images are also confidently detected at >~ 6-sigma in F140W (~1.2 - 1.6 um), dropping out of detection from 15 lower wavelength HST filters (~0.2 - 1.4 um), and lacking bright detections in Spitzer/IRAC 3.6um and 4.5um imaging (~3.2 - 5.0 um). We rule out a broad range of possible lower redshift interlopers, including some previously published as high redshift candidates. Our high redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high mass clusters to date, our discoveries of MACS0647-JD at z ~ 10.8 and MACS1149-JD1 at z ~ 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low luminosity galaxies could have reionized the universe. However given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop off in number counts at z >~ 10 suggested by field searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا