ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimum frequency band for radio polarisation observations

47   0   0.0 ( 0 )
 نشر من قبل Tigran Arshakian Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polarised radio synchrotron emission from interstellar, intracluster and intergalactic magnetic fields is affected by frequency-dependent Faraday depolarisation. The maximum polarised intensity depends on the physical properties of the depolarising medium. New-generation radio telescopes like LOFAR, SKA and its precursors need a wide range of frequencies to cover the full range of objects. The optimum frequency of maximum polarised intensity (PI) is computed for the cases of depolarisation in magneto-ionic media by regular magnetic fields (differential Faraday rotation) or by turbulent magnetic fields (internal or external Faraday dispersion), assuming that the Faraday spectrum of the medium is dominated by one component or that the medium is turbulent. Polarised emission from bright galaxy disks, spiral arms and cores of galaxy clusters are best observed at wavelengths below a few centimeters (at frequencies beyond about 10 GHz), halos of galaxies and clusters around decimeter wavelengths (at frequencies below about 2 GHz). Intergalactic filaments need observations at meter wavelengths (frequencies below 300 MHz). Sources with extremely large intrinsic $|RM|$ or RM dispersion can be searched with mm-wave telescopes. Measurement of the PI spectrum allows us to derive the average Faraday rotation measure $|RM|$ or the Faraday dispersion within the source, as demonstrated for the case of the spiral galaxy NGC 6946. Periodic fluctuations in PI at low frequencies are a signature of differential Faraday rotation. Internal and external Faraday dispersion can be distinguished by the different slopes of the PI spectrum at low frequencies. A wide band around the optimum frequency is important to distinguish between varieties of depolarisation effects.

قيم البحث

اقرأ أيضاً

Diffuse radio emission from galaxy clusters in the form of radio halos and relics are tracers of the shocks and turbulence in the intra-cluster medium. The imprints of the physical processes that govern their origin and evolution can be found in thei r radio morphologies and spectra. The role of mildly relativistic population of electrons may be crucial for the acceleration mechanisms to work efficiently. Low frequency observations with telescopes that allow imaging of extended sources over a broad range of low frequencies ($< 2$ GHz) offer the best tools to study these sources. I will review the Giant Metrewave Radio Telescope (GMRT) observations in the past few years that have led to: i) statistical studies of large samples of galaxy clusters, ii) opening of the discovery space in low mass clusters and iii) tracing the spectra of seed relativistic electrons using the Upgraded GMRT.
93 - Samir Choudhuri 2014
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried there in. The discussion here is restricted to the Galactic synchrotron radiation, the most dominant foreground component after point source removal. Our theoretical analysis is validated using simulations at 150 MHz, mainly for GMRT and also briefly for LOFAR. The Bare Estimator uses pairwise correlations of the measured visibilities, while the Tapered Gridded Estimator uses the visibilities after gridding in the uv plane. The former is very precise, but computationally expensive for large data. The latter has a lower precision, but takes less computation time which is proportional to the data volume. The latter also allows tapering of the sky response leading to sidelobe suppression, an useful ingredient for foreground removal. Both estimators avoid the positive bias that arises due to the system noise. We consider amplitude and phase errors of the gain, and the w-term as possible sources of errors . We find that the estimated angular power spectrum is exponentially sensitive to the variance of the phase errors but insensitive to amplitude errors. The statistical uncertainties of the estimators are affected by both amplitude and phase errors. The w-term does not have a significant effect at the angular scales of our interest. We propose the Tapered Gridded Estimator as an effective tool to observationally quantify both foregrounds and the cosmological 21-cm signal.
Aims. We present low-frequency radio imaging and spectral properties of a well defined sample of Seyfert galaxies using GMRT 240/610 MHz dual frequency observations. Radio spectra of Seyfert galaxies over 240 MHz to 5.0 GHz are investigated using 240 MHz, 610 MHz flux densities derived from GMRT, and 1.4 GHz and 5.0 GHz flux densities mainly from published VLA data. We test the predictions of Seyfert unification scheme by comparing the radio properties of Seyfert type 1s and type 2s. Methods. We choose a sample such that the two Seyfert subtypes have matched distributions in parameters that are independent to the orientation of AGN, obscuring torus and the host galaxy. Our sample selection criteria allow us to assume that the two Seyfert subtypes are intrinsically similar within the framework of the unification scheme. Results. The new observations at 240/610 MHz, together with archival observations at 1.4 GHz, 5.0 GHz show that type 1s and type 2s have statistically similar radio luminosity distributions at 240 MHz, 610 MHz, 1.4 GHz and 5.0 GHz. The spectral indices at selected frequency intervals as well as index measured over 240 MHz to 5.0 GHz for the two Seyfert subtypes have similar distributions with median spectral index $/sim$ -0.7, consistent with the synchrotron emission from optically thin plasma. In our snap-shot 240/610 MHz GMRT observations, most of the Seyfert galaxies show primarily an unresolved central radio component, except a few sources in which faint kpc-scale extended emission is apparent at 610 MHz. Our results on the statistical comparison of the multifrequency radio properties of our sample Seyfert galaxies are in agreement with the predictions of the Seyfert unification scheme.
Radio-frequency reflectometry of nanodevices requires careful separation of signal quadratures to distinguish dissipative and dispersive contributions to the device impedance. A tunable phase shifter for this purpose is described and characterized. T he phase shifter, consisting of a varactor-loaded transmission line, has the necessary tuning range combined with acceptable insertion loss across a frequency band 100 MHz - 1 GHz spanning most radio-frequency experiments. Its operation is demonstrated by demodulating separately the signals due to resistance and capacitance changes in a model device.
We combine the latest datasets obtained with different surveys to study the frequency dependence of polarized emission coming from Extragalactic Radio Sources (ERS). We consider data over a very wide frequency range starting from $1.4$ GHz up to $217 $ GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming Cosmic Microwave Background (cmb) experiments. Current data suggest that at high radio frequencies, ($ u geq 20$ GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent datasets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio-frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming cmb experiments about $sim 200 $ ( up to $sim 2000 $ ) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is $r< 0.05$ and they have to be robustly controlled to de-lens cmb B-modes at the arcminute angular scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا