ترغب بنشر مسار تعليمي؟ اضغط هنا

The Einsteins linear equation of a space-time with a homogeneous section of low dimension

48   0   0.0 ( 0 )
 نشر من قبل Jose Martinez-Morales L.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Einsteins linear equation of a small perturbation in a space-time with a homogeneous section of low dimension, is studied. For every harmonic mode of the horizon, there are two solutions which behave differently at large distance $r$. In the basic mode, the behavior of one of the solutions is ${{(-{r^2}+{t^2})}^{frac{1-n}{2}}}$ where $n$ is dimension of space. These solutions occur in an integral form. In addition, a main statement of the article is that a field in a black hole decays at infinity according to a universal law. An example of such a field is an eigentensor of the Einsteins linear operator that corresponds to an eigenvalue different from Zero. Possible applications to the stability of black holes of high dimension are discussed. The analysis we present is of a small perturbation of space-time. The perturbation analysis of higher order will appear in a sequel. We determine perturbations of space-time in dimension 1+$nge$ 4 where the system of equations is simplified to the Einsteins linear equation, a tensor differential equation. The solutions are some integral transformations which in some cases reduce to explicit functions. We perform some perturbation analysis and we show that there exists no perturbation regular everywhere outside the event horizon which is well behaved at the spatial infinity. This confirms the uniqueness of vacuum space-time within the perturbation theory framework. Our strategy for treating the stability problem is applicable to other space-times of high dimension with a cosmological constant different from Zero.

قيم البحث

اقرأ أيضاً

In absence of explicit solutions of the perturbation equation of a static symmetrical homogeneous space-time, the best we can do is to construct a {it quasi-}transformation. In this framework, we solve the perturbation equation with initial data and a number of results are derived. Far from the horizon of a black hole of even space dimension $N$, a mass-less field decays as ${r^l} {{(-{r^2}+{t^2})}^{frac{1-N}{2}-l}}$ in space-time, where $l$ is a harmonic number of the sphere. A relation of energy and momentum of a particle with mass in a hyper black hole is discovered and a solution to the equation of Klein-Gordon in the metric of Schwarzschild-Tangherlini with initial data on the hypersphere is proposed. Also, the Greens function of the Klein-Gordon equation in Schwarzschild coordinates is calculated. This function is a sum on the harmonic modes of the sphere. The first term is a double integration on the spectrum of energy and the momentum of the particle. Far from the horizon, the double integration is approximated by an integration on a line defined by the relation of energy and momentum of a free particle. From here, the potential of Yukawa is derived. Finally, the linear perturbation equations are derived and solved exactly.
Viewing Einsteins theory as the gauge theory of Lorentz group, we construct the most general vacuum connections which have vanishing curvature tensor and show that the vacuum space-time can be classified by the knot topology $pi_3(S^3)simeq pi_3(S^2) $ of $pi_3(SO(3,1))$. With this we obtain the gauge independent vacuum decomposition of Einsteins theory to the vacuum and gauge covariant physical parts. We discuss the physical implications of our result in quantum gravity.
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the laboratory and to calculate the leading correction due to the curvature of the space-time geometry to the Schrodinger equation. The correction is employed to calculate the probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzchild black hole. Since the excited states decay due to spontaneous photon emission, this study provides the theoretical base for detection of small isolated black holes by observing the decay of the excited states as neutral hydrogen atoms in the vacuum are devoured by the black hole.
The effect of introducing a fifth large-scale space-time dimension to the equations of orbital dynamics was analysed in an earlier paper by the authors. The results showed good agreement with the observed flat rotation curves of galaxies and the Pion eer Anomaly. This analysis did not require the modification of Newtonian dynamics, but rather only their restatement in a five dimensional framework. The same analysis derived a acceleration parameter ar, which plays an important role in the restated equations of orbital dynamics, and suggested a value for ar. In this companion paper, the principle of conservation of energy is restated within the same five-dimensional framework. The resulting analysis provides an alternative route to estimating the value of ar, without reference to the equations of orbital dynamics, and based solely on key cosmological constants and parameters, including the gravitational constant, G. The same analysis suggests that: (i) the inverse square law of gravity may itself be due to the conservation of energy at the boundary between a four-dimensional universe and a fifth large-scale space-time dimension; and (ii) there is a limiting case for the Tulley-Fisher relationship linking the speed of light to the mass of the Universe.
We apply the Induced Matter Model to a five-dimensional metric. For the case with null cosmological constant, we obtain a solution able to describe the radiation-dominated era of the universe. The positive $Lambda$ case yields a bounce cosmological m odel. In the negative five-dimensional cosmological constant case, the scale factor is obtained as $a(t)simsqrt[]{sinh t}$, which is able to describe not only the late-time cosmic acceleration but also the non-accelerated stages of the cosmic expansion in a continuous form. This solution together with the extra-dimensional scale factor solution yields the material content of the model to be remarkably related through an equation of state analogous to the renowned MIT bag model equation of state for quark matter $p=(rho-4B)/3$. In our case, $rho=rho_m+B$, with $rho_m$ being the energy density of relativistic and non-relativistic matter and $B= Lambda /16pi$ represents the bag energy constant, which plays the role of the dark energy in the four-dimensional universe, with $Lambda$ being the cosmological constant of the AdS$_5$ space-time. Our model satisfactorily fits the observational data for the low redshift sample of the experimental measurement of the Hubble parameter, which resulted in $H_0=72.2^{+5.3}_{-5.5}$km s$^{-1}$ Mpc$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا