ﻻ يوجد ملخص باللغة العربية
We demonstrate a three step laser stabilisation scheme for excitation to nP and nF Rydberg states in 85Rb, with all three lasers stabilised using active feedback to independent Rb vapour cells. The setup allows stabilisation to the Rydberg states 36P3/2 to 70P3/2 and 33F7/2 to 90F7/2, with the only limiting factor being the available third step laser power. We study the scheme by monitoring the three laser frequencies simultaneously against a self-referenced optical frequency comb. The third step laser, locked to the Rydberg transition, displays an Allan deviation of 30 kHz over 1 second and < 80 kHz over 1 hour. The scheme is very robust and affordable, and it would be ideal for carrying out a range of quantum information experiments.
We present a versatile laser system which provides more than 1.5W of narrowband light, tunable in the range from 455-463 nm. It consists of a commercial Titanium-Sapphire laser which is frequency doubled using resonant cavity second harmonic generati
A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium R
Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control ca
Limits to Rydberg gate fidelity that arise from the entanglement of internal states of neutral atoms with the motional degrees of freedom due to the momentum kick from photon absorption and re-emission is quantified. This occurs when the atom is in a
We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scal