ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a bicritical point in the XXZ Heisenberg antiferromagnet on a simple cubic lattice

98   0   0.0 ( 0 )
 نشر من قبل Walter Selke
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Walter Selke




اسأل ChatGPT حول البحث

The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy, the XXZ model, in a magnetic field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. Analyzing, especially, various staggered susceptibilities and Binder cumulants, we present clear evidence for the meeting point of the antiferromagnetic, spin--flop, and paramagnetic phases being a bicritical point with Heisenberg symmetry. Results are compared to previous predictions based on various theoretical approaches.



قيم البحث

اقرأ أيضاً

The pure-quantum self-consistent harmonic approximation, a semiclassical method based on the path-integral formulation of quantum statistical mechanics, is applied to the study of the thermodynamic behaviour of the quantum Heisenberg antiferromagnet on the square lattice (QHAF). Results for various properties are obtained for different values of the spin and successfully compared with experimental data.
In a previous paper [Phys. Rev. E 90, 022506 (2014)], we had studied thermodynamic and structural properties of a three-dimensional simple-cubic lattice model with dipolar-like interaction, truncated at nearest-neighbor separation, for which the exis tence of an ordering transition at finite temperature had been proven mathematically; here we extend our investigation addressing the full-ranged counterpart of the model, for which the critical behavior had been investigated theoretically and experimentally. In addition the existence of an ordering transition at finite temperature had been proven mathematically as well. Both models exhibited the same continuously degenerate ground-state configuration, possessing full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order; in both cases, thermal fluctuations remove the degeneracy, so that nematic order does set in at low but finite temperature via a mechanism of order by disorder. On the other hand, there were recognizable quantitative differences between the two models as for ground-state energy and critical exponent estimates; the latter were found to agree with early Renormalization Group calculations and with experimental results.
136 - Chenggang Zhou , D. P. Landau , 2006
By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in $2+epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dimensions is Heisenberg-like and occurs at T=0, therefore the uncertainty in the phase diagram of this model is removed.
255 - G. Bannasch , W. Selke 2008
Classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term in a field on simple cubic lattices are studied with the help of ground state considerations and extensive Monte Carlo simulations. Especially, we ana lyze the role of non-collinear structures of biconical type occurring in addition to the well-known antiferromagnetic and spin-flop structures. Pertinent phase diagrams are determined, and compared to previous findings.
The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kag ome triangle (``b-trimer). We show that in the limit where spins residing on b-trimers have Ising character, quantum fluctuations of XXZ spins residing on the a-trimers can be exactly accounted for in the absence of applied field. This is accomplished through a mapping to the kagome Ising model, for which exact analytic solutions exist. We derive the complete finite temperature phase diagram for this XXZ-Ising model, including the residual zero temperature entropies of the seven ground state phases. Whereas the disordered (spin liquid) ground state of the pure Ising TKL model has macroscopic residual entropy ln72=4.2767... per unit cell, the introduction of transverse(quantum) couplings between neighboring $a$-spins reduces this entropy to 2.5258... per unit cell. In the presence of applied magnetic field, we map the TKL XXZ-Ising model to the kagome Ising model with three-spin interactions, and derive the ground state phase diagram. A small (or even infinitesimal) field leads to a new phase that corresponds to a non-intersecting loop gas on the kagome lattice, with entropy 1.4053... per unit cell and a mean magnetization for the b-spins of 0.12(1) per site. In addition, we find that for moderate applied field, there is a critical spin liquid phase which maps to close-packed dimers on the honeycomb lattice, which survives even when the a-spins are in the Heisenberg limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا